Answer :

To determine how many molecules are in 4.85 moles of carbon tetrachloride (CCl₄), we need to use Avogadro's number.

Avogadro's number is a constant that represents the number of constituent particles (usually atoms or molecules) in one mole of a given substance. This number is approximately [tex]\( 6.022 \times 10^{23} \)[/tex] molecules per mole.

Given:
- Number of moles of CCl₄: 4.85 moles

Steps to find the number of molecules:

1. Identify Avogadro's number, which is [tex]\( 6.022 \times 10^{23} \)[/tex] molecules/mole.
2. Multiply the number of moles by Avogadro's number to find the total number of molecules.

[tex]\[ \text{Number of molecules} = \text{Number of moles} \times \text{Avogadro's number} \][/tex]

[tex]\[ \text{Number of molecules} = 4.85 \, \text{moles} \times 6.022 \times 10^{23} \, \text{molecules/mole} \][/tex]

3. Perform the multiplication:

[tex]\[ \text{Number of molecules} = 4.85 \times 6.022 \times 10^{23} \][/tex]

4. The result of this calculation is:

[tex]\[ \text{Number of molecules} = 2.92067 \times 10^{24} \][/tex]

Hence, there are [tex]\( 2.92067 \times 10^{24} \)[/tex] molecules in 4.85 moles of carbon tetrachloride (CCl₄).