Select the correct answer.

Which complex number is equivalent to this expression?
[tex]\[
\frac{1}{3}(6+3i) - \frac{2}{3}(6-12i)
\][/tex]

A. [tex]\(6-7i\)[/tex]

B. [tex]\(-2-7i\)[/tex]

C. [tex]\(6+9i\)[/tex]

D. [tex]\(-2+9i\)[/tex]



Answer :

To find the complex number equivalent to the expression given, we start by breaking it down into two parts and simplifying each one separately.

The expression is:

[tex]\[ \frac{1}{3}(6+3 i) - \frac{2}{3}(6-12 i) \][/tex]

1. Simplify the first term:

[tex]\[ \frac{1}{3}(6+3i) \][/tex]

We can distribute [tex]\(\frac{1}{3}\)[/tex] across the terms inside the parentheses:

[tex]\[ \frac{1}{3} \cdot 6 + \frac{1}{3} \cdot 3i = 2 + i \][/tex]

So, the first term simplifies to [tex]\(2 + i\)[/tex].

2. Simplify the second term:

[tex]\[ \frac{2}{3}(6-12i) \][/tex]

We distribute [tex]\(\frac{2}{3}\)[/tex] across the terms inside the parentheses:

[tex]\[ \frac{2}{3} \cdot 6 - \frac{2}{3} \cdot 12i = 4 - 8i \][/tex]

So, the second term simplifies to [tex]\(4 - 8i\)[/tex].

3. Subtract the second term from the first term:

Combine [tex]\(2 + i\)[/tex] and [tex]\(4 - 8i\)[/tex]:

[tex]\[ (2 + i) - (4 - 8i) = 2 + i - 4 + 8i \][/tex]

Combine like terms:

[tex]\[ = (2 - 4) + (i + 8i) = -2 + 9i \][/tex]

Therefore, the complex number equivalent to the given expression is [tex]\(-2 + 9i\)[/tex].

4. The correct answer is:

[tex]\[ \boxed{-2 + 9i} \][/tex]

So, the correct option is:

D. [tex]\( -2 + 9i \)[/tex]