The linear velocity of a body moving around a circle of radius [tex]1.0 \, \text{m}[/tex] is [tex]6.5 \, \text{m/s}[/tex].

1. Find the angular velocity.
2. Find the centripetal acceleration.



Answer :

To solve for the angular velocity and the centripetal acceleration of a body moving around a circle with a given linear velocity and radius, we will follow these steps:

### Given:
- Radius ([tex]\(r\)[/tex]) = 1.0 meters
- Linear velocity ([tex]\(v\)[/tex]) = 6.5 meters per second

### 1. Angular Velocity ([tex]\(\omega\)[/tex])

Angular velocity is the rate of change of the angle traversed by the body per unit time and is given by the formula:
[tex]\[ \omega = \frac{v}{r} \][/tex]

Substitute the given values:
[tex]\[ \omega = \frac{6.5 \, \text{m/s}}{1.0 \, \text{m}} \][/tex]

This simplifies to:
[tex]\[ \omega = 6.5 \, \text{radians per second} \][/tex]

### 2. Centripetal Acceleration ([tex]\(a_c\)[/tex])

Centripetal acceleration is the acceleration that keeps the body moving in a circular path and is directed towards the center of the circle. It is given by the formula:
[tex]\[ a_c = \frac{v^2}{r} \][/tex]

Substitute the given values:
[tex]\[ a_c = \frac{(6.5 \, \text{m/s})^2}{1.0 \, \text{m}} \][/tex]

Calculating the numerator:
[tex]\[ (6.5 \, \text{m/s})^2 = 42.25 \, \text{m}^2/\text{s}^2 \][/tex]

Now, dividing by the radius:
[tex]\[ a_c = \frac{42.25 \, \text{m}^2/\text{s}^2}{1.0 \, \text{m}} \][/tex]

This simplifies to:
[tex]\[ a_c = 42.25 \, \text{m/s}^2 \][/tex]

### Summary:

1. Angular Velocity: [tex]\(\omega = 6.5 \, \text{radians per second}\)[/tex]
2. Centripetal Acceleration: [tex]\(a_c = 42.25 \, \text{m/s}^2\)[/tex]