Answer :

To find the linear function [tex]\( f(x) \)[/tex] that passes through the points [tex]\( (-4, 7) \)[/tex] and [tex]\( (-8, -2) \)[/tex], we need to determine the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( b \)[/tex].

### Step 1: Calculate the Slope [tex]\( m \)[/tex]

The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Plugging in the coordinates of the given points [tex]\((x_1, y_1) = (-4, 7)\)[/tex] and [tex]\((x_2, y_2) = (-8, -2)\)[/tex]:

[tex]\[ m = \frac{-2 - 7}{-8 - (-4)} \][/tex]
[tex]\[ m = \frac{-9}{-4} \][/tex]
[tex]\[ m = 2.25 \][/tex]

### Step 2: Calculate the Y-Intercept [tex]\( b \)[/tex]

The equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]

We can rearrange this equation to solve for [tex]\( b \)[/tex]:
[tex]\[ b = y - mx \][/tex]

Using the point [tex]\((-4, 7)\)[/tex] and the slope [tex]\( m = 2.25 \)[/tex]:

[tex]\[ b = 7 - (2.25 \times -4) \][/tex]
[tex]\[ b = 7 + 9 \][/tex]
[tex]\[ b = 16 \][/tex]

### Step 3: Write the Equation of the Line

Now that we have the slope [tex]\( m = 2.25 \)[/tex] and the y-intercept [tex]\( b = 16 \)[/tex], we can write the linear function as:
[tex]\[ f(x) = 2.25x + 16 \][/tex]

So, the linear function that passes through the points [tex]\( (-4, 7) \)[/tex] and [tex]\( (-8, -2) \)[/tex] is:
[tex]\[ f(x) = 2.25x + 16 \][/tex]