Determine the distance between the points [tex]\((-3, -1)\)[/tex] and [tex]\((-9, -10)\)[/tex].

A. [tex]\(\sqrt{15}\)[/tex] units
B. [tex]\(\sqrt{113}\)[/tex] units
C. [tex]\(\sqrt{117}\)[/tex] units
D. [tex]\(\sqrt{265}\)[/tex] units



Answer :

To determine the distance between the points [tex]\((-3, -1)\)[/tex] and [tex]\((-9, -10)\)[/tex], we can use the distance formula for points in a coordinate plane. The distance formula is derived from the Pythagorean Theorem and is given as:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Here [tex]\((x_1, y_1)\)[/tex] are the coordinates of the first point and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the second point.

Let's plug in the given coordinates:
- [tex]\((x_1, y_1) = (-3, -1)\)[/tex]
- [tex]\((x_2, y_2) = (-9, -10)\)[/tex]

First, find the differences in the [tex]\(x\)[/tex]-coordinates and [tex]\(y\)[/tex]-coordinates:
[tex]\[ x_2 - x_1 = -9 - (-3) = -9 + 3 = -6 \][/tex]

[tex]\[ y_2 - y_1 = -10 - (-1) = -10 + 1 = -9 \][/tex]

Next, square these differences:
[tex]\[ (-6)^2 = 36 \][/tex]

[tex]\[ (-9)^2 = 81 \][/tex]

Now, sum these squared differences:
[tex]\[ 36 + 81 = 117 \][/tex]

Finally, take the square root of this sum to find the distance:
[tex]\[ d = \sqrt{117} \][/tex]

So, the distance between the points [tex]\((-3, -1)\)[/tex] and [tex]\((-9, -10)\)[/tex] is [tex]\(\sqrt{117}\)[/tex] units.

Therefore, the correct answer is:
[tex]\[ \boxed{\sqrt{117}} \][/tex]