Answered

A line segment has endpoints at [tex]\((-4,-6)\)[/tex] and [tex]\((-6,4)\)[/tex]. Which reflection will produce an image with endpoints at [tex]\((4,-6)\)[/tex] and [tex]\((8,4)\)[/tex]?

A. A reflection of the line segment across the [tex]\(x\)[/tex]-axis
B. A reflection of the line segment across the [tex]\(y\)[/tex]-axis
C. A reflection of the line segment across the line [tex]\(y=x\)[/tex]
D. A reflection of the line segment across the line [tex]\(y=-x\)[/tex]



Answer :

To determine which reflection produces the specified endpoints, let's review various transformations:

1. Reflection across the [tex]\(x\)[/tex]-axis:
- Reflecting a point [tex]\((x, y)\)[/tex] across the [tex]\(x\)[/tex]-axis results in [tex]\((x, -y)\)[/tex].
- For [tex]\((-4, -6)\)[/tex], reflecting it across the [tex]\(x\)[/tex]-axis gives us [tex]\((-4, 6)\)[/tex].
- For [tex]\((-6, 4)\)[/tex], reflecting it across the [tex]\(x\)[/tex]-axis gives us [tex]\((-6, -4)\)[/tex].
- The endpoints after reflection are: [tex]\((-4, 6)\)[/tex] and [tex]\((-6, -4)\)[/tex].

2. Reflection across the [tex]\(y\)[/tex]-axis:
- Reflecting a point [tex]\((x, y)\)[/tex] across the [tex]\(y\)[/tex]-axis results in [tex]\((-x, y)\)[/tex].
- For [tex]\((-4, -6)\)[/tex], reflecting it across the [tex]\(y\)[/tex]-axis gives us [tex]\((4, -6)\)[/tex].
- For [tex]\((-6, 4)\)[/tex], reflecting it across the [tex]\(y\)[/tex]-axis gives us [tex]\((6, 4)\)[/tex].
- The endpoints after reflection are: [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex].

3. Reflection across the line [tex]\(y = x\)[/tex]:
- Reflecting a point [tex]\((x, y)\)[/tex] across the line [tex]\(y = x\)[/tex] results in [tex]\((y, x)\)[/tex].
- For [tex]\((-4, -6)\)[/tex], reflecting it across the line [tex]\(y = x\)[/tex] gives us [tex]\((-6, -4)\)[/tex].
- For [tex]\((-6, 4)\)[/tex], reflecting it across the line [tex]\(y = x\)[/tex] gives us [tex]\((4, -6)\)[/tex].
- The endpoints after reflection are: [tex]\((-6, -4)\)[/tex] and [tex]\((4, -6)\)[/tex].

4. Reflection across the line [tex]\(y = -x\)[/tex]:
- Reflecting a point [tex]\((x, y)\)[/tex] across the line [tex]\(y = -x\)[/tex] results in [tex]\((-y, -x)\)[/tex].
- For [tex]\((-4, -6)\)[/tex], reflecting it across the line [tex]\(y = -x\)[/tex] gives us [tex]\((6, 4)\)[/tex].
- For [tex]\((-6, 4)\)[/tex], reflecting it across the line [tex]\(y = -x\)[/tex] gives us [tex]\((-4, -6)\)[/tex].
- The endpoints after reflection are: [tex]\((6, 4)\)[/tex] and [tex]\((-4, -6)\)[/tex].

We want the reflected line segment to have endpoints [tex]\((4, -6)\)[/tex] and [tex]\((8, 4)\)[/tex]. Let's compare this with our results:

- Reflection across the [tex]\(x\)[/tex]-axis gives endpoints [tex]\((-4, 6)\)[/tex] and [tex]\((-6, -4)\)[/tex].
- Reflection across the [tex]\(y\)[/tex]-axis gives endpoints [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex].
- Reflection across the line [tex]\(y = x\)[/tex] gives endpoints [tex]\((-6, -4)\)[/tex] and [tex]\((4, -6)\)[/tex].
- Reflection across the line [tex]\(y = -x\)[/tex] gives endpoints [tex]\((6, 4)\)[/tex] and [tex]\((-4, -6)\)[/tex].

None of the reflections match the desired endpoints of [tex]\((4, -6)\)[/tex] and [tex]\((8, 4)\)[/tex]. Therefore, it is concluded that the specified reflection does not produce the required endpoints.