Q1. Insert three rational numbers between [tex]\(-\frac{2}{3}\)[/tex] and [tex]\(-\frac{1}{3}\)[/tex].

Q2. Calculate the [tex]\(\frac{p}{q}\)[/tex] form of [tex]\(0.\overline{777}\)[/tex], where [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are integers and [tex]\(q \neq 0\)[/tex].

Q3. Write the sum of [tex]\(0.\overline{3}\)[/tex] and [tex]\(0.4\)[/tex].

Q4. Express [tex]\(0.32\overline{28}\)[/tex] in the form of [tex]\(\frac{p}{q}\)[/tex], where [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are integers and [tex]\(q \neq 0\)[/tex].

Q5. Express [tex]\(0.6 + 0.7 + 0.4\overline{7}\)[/tex] in the form of [tex]\(\frac{p}{q}\)[/tex].

Q6. Calculate an irrational number between 2 and 2.5.

Q7. Simplify: [tex]\(3 \sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{50}\)[/tex].



Answer :

Let's solve each problem step-by-step:

### Q1: Insert three rational numbers between [tex]\(-\frac{2}{3}\)[/tex] and [tex]\(-\frac{1}{3}\)[/tex].

To find three rational numbers between [tex]\(-\frac{2}{3}\)[/tex] and [tex]\(-\frac{1}{3}\)[/tex]:

1. The first rational number can be [tex]\(-\frac{2}{3} + \frac{1}{12} = -0.5833333333333333\)[/tex].
2. The second rational number can be [tex]\(-\frac{2}{3} + \frac{1}{6} = -0.5\)[/tex].
3. The third rational number can be [tex]\(-\frac{2}{3} + \frac{1}{4} = -0.41666666666666663\)[/tex].

So, the three rational numbers are [tex]\( -0.5833333333333333 \)[/tex], [tex]\( -0.5 \)[/tex], and [tex]\( -0.41666666666666663 \)[/tex].

### Q2: Calculate the [tex]\( \frac{p}{q} \)[/tex] form of [tex]\(0.777...\)[/tex], where [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are integers and [tex]\(q \neq 0\)[/tex].

The repeating decimal [tex]\(0.777...\)[/tex] can be expressed as a fraction. It is equal to [tex]\(\frac{7}{9}\)[/tex].

So, [tex]\(p = 7\)[/tex] and [tex]\(q = 9\)[/tex].

### Q3: Write the sum of [tex]\(0.\overline{3}\)[/tex] and 0.4.

To find the sum of [tex]\(0.\overline{3}\)[/tex] and [tex]\(0.4\)[/tex]:

- [tex]\(0.\overline{3}\)[/tex] as a fraction is [tex]\( \frac{1}{3} \)[/tex].
- Adding [tex]\(0.4\)[/tex] gives us [tex]\( \frac{1}{3} + 0.4 \)[/tex].

The sum is approximately [tex]\(0.7333333333333334\)[/tex].

### Q4: Express [tex]\(0.32\overline{28}\)[/tex] in the form of [tex]\(\frac{p}{q}\)[/tex], where [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are integers and [tex]\(q \neq 0\)[/tex].

To express [tex]\(0.32\overline{28}\)[/tex] in fraction form, follow these steps:

1. Let [tex]\(x = 0.322828...\)[/tex].
2. Multiply by 1000: [tex]\(1000x = 322.82828...\)[/tex].
3. Multiply by 10: [tex]\(10x = 3.2282828...\)[/tex].

Subtract these equations:

[tex]\[1000x - 10x = 322.82828... - 3.2282828...\][/tex]

[tex]\[990x = 322.5\][/tex]

Thus, [tex]\( x = \frac{322.5}{990} \)[/tex].

### Q5: Express [tex]\(0.6 + 0.7 + 0.4\overline{7}\)[/tex] in the form of [tex]\( \frac{p}{q}\)[/tex].

To find the sum of [tex]\(0.6 + 0.7 + 0.4\overline{7}\)[/tex]:

1. [tex]\(0.6 + 0.7 = 1.3\)[/tex].
2. The repeating decimal [tex]\(0.4\overline{7}\)[/tex] as a fraction is [tex]\(0.4 + \frac{4}{9} = 0.877777...\)[/tex].

The sum is approximately [tex]\(2.1444444444444444\)[/tex].

### Q6: Calculate the irrational number between [tex]\(2\)[/tex] and [tex]\(2.5\)[/tex].

An example of an irrational number between [tex]\(2\)[/tex] and [tex]\(2.5\)[/tex] is approximately [tex]\(2.3067071956034932\)[/tex].

### Q7: Simplify [tex]\(3 \sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{50}\)[/tex].

To simplify [tex]\(3 \sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{50}\)[/tex]:

1. [tex]\(3 \sqrt{45} = 3 \cdot 3 \sqrt{5} = 9 \sqrt{5}\)[/tex].
2. [tex]\(\sqrt{125} = 5 \sqrt{5}\)[/tex].
3. [tex]\(\sqrt{200} = \sqrt{4 \cdot 50} = 2 \cdot \sqrt{50} = 2 \cdot 5 \sqrt{2} = 10 \sqrt{2}\)[/tex].
4. [tex]\(\sqrt{50} = 5 \sqrt{2}\)[/tex].

Now, combine them:

[tex]\[3 \sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{50} = 9 \sqrt{5} - 5 \sqrt{5} + 10 \sqrt{2} - 5 \sqrt{2}\][/tex]

[tex]\[= (9 \sqrt{5} - 5 \sqrt{5}) + (10 \sqrt{2} - 5 \sqrt{2})\][/tex]

[tex]\[= 4 \sqrt{5} + 5 \sqrt{2}\][/tex]

And hence, the simplified form is [tex]\(5 \sqrt{2} + 4 \sqrt{5}\)[/tex].