Convert the pressure inside a tire from [tex]\(28.0 \frac{\text{pounds}}{\text{inch}^2}\)[/tex] to [tex]\(\frac{\text{newtons}}{\text{centimeter}^2}\)[/tex].

Given:
1 pound = 4.45 newtons
1 inch[tex]\(^2\)[/tex] = 6.45 centimeters[tex]\(^2\)[/tex]

Express the answer to the correct number of significant figures.

The pressure is [tex]\(\square\)[/tex] [tex]\(\frac{\text{newtons}}{\text{centimeter}^2}\)[/tex].



Answer :

To convert the pressure from pounds per square inch ([tex]$\frac{\text{lb}}{\text{in}^2}$[/tex]) to newtons per square centimeter ([tex]$\frac{\text{N}}{\text{cm}^2}$[/tex]), follow these steps:

1. Start with the given pressure in pounds per square inch:
[tex]\[ 28.0 \frac{\text{lb}}{\text{in}^2} \][/tex]

2. Convert pounds to newtons:
[tex]\[ 1 \text{ lb} = 4.45 \text{ N} \][/tex]
Therefore,
[tex]\[ 28.0 \frac{\text{lb}}{\text{in}^2} \times 4.45 \frac{\text{N}}{\text{lb}} \][/tex]

3. Convert square inches to square centimeters:
[tex]\[ 1 \text{ in}^2 = 6.45 \text{ cm}^2 \][/tex]
Therefore,
[tex]\[ 28.0 \left( \frac{\text{lb}}{\text{in}^2} \times 4.45 \right) / 6.45 \][/tex]

4. Calculate the intermediate value:
[tex]\[ 28.0 \times 4.45 = 124.6 \text{ N/in}^2 \][/tex]
Now divide by 6.45 to convert to [tex]$\text{N/cm}^2$[/tex]:
[tex]\[ \frac{124.6}{6.45} = 19.318 \text{ N/cm}^2 \][/tex]

5. Express the answer to the correct number of significant figures:
- The initial value (28.0) has 3 significant figures.
- Therefore, the final answer should also have 3 significant figures.

Hence, the pressure is:
[tex]\[ \boxed{19.318} \frac{\text{newtons}}{\text{centimeter}^2} \][/tex]

Answer:

Explanation:

To convert the pressure from pounds per square inch ($\frac{\text{lb}}{\text{in}^2}$) to newtons per square centimeter ($\frac{\text{N}}{\text{cm}^2}$), follow these steps:

1. Start with the given pressure in pounds per square inch:

\[

  28.0 \frac{\text{lb}}{\text{in}^2}

  \]

2. Convert pounds to newtons:

\[

  1 \text{ lb} = 4.45 \text{ N}

  \]

Therefore,

\[

  28.0 \frac{\text{lb}}{\text{in}^2} * 4.45 \frac{\text{N}}{\text{lb}}

  \]

3. Convert square inches to square centimeters:

\[

  1 \text{ in}^2 = 6.45 \text{ cm}^2

  \]

Therefore,

\[

  28.0 \left( \frac{\text{lb}}{\text{in}^2} * 4.45 \right) / 6.45

  \]

4. Calculate the intermediate value:

\[

  28.0 * 4.45 = 124.6 \text{ N/in}^2

  \]

Now divide by 6.45 to convert to $\text{N/cm}^2$:

\[

  (124.6)/(6.45) = 19.318 \text{ N/cm}^2

  \]

5. Express the answer to the correct number of significant figures:

- The initial value (28.0) has 3 significant figures.

- Therefore, the final answer should also have 3 significant figures.

Hence, the pressure is:

\[

\boxed{19.318} \frac{\text{newtons}}{\text{centimeter}^2}

\]