What are the coordinates of the point that is [tex]\(\frac{3}{5}\)[/tex] of the way from [tex]\(A(-9,3)\)[/tex] to [tex]\(B(21,-2)\)[/tex]?

A. [tex]\((-7,2)\)[/tex]
B. [tex]\((9,0)\)[/tex]
C. [tex]\((3,1)\)[/tex]
D. [tex]\((9,1)\)[/tex]



Answer :

To find the coordinates of the point that is [tex]\(\frac{3}{5}\)[/tex] of the way from point [tex]\(A(-9,3)\)[/tex] to point [tex]\(B(21,-2)\)[/tex], we can follow these steps:

1. Identify the coordinates of points [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
- Point [tex]\(A\)[/tex] has coordinates [tex]\((-9, 3)\)[/tex].
- Point [tex]\(B\)[/tex] has coordinates [tex]\((21, -2)\)[/tex].

2. Calculate the fraction [tex]\(\frac{3}{5}\)[/tex] of the distance between [tex]\(A\)[/tex] and [tex]\(B\)[/tex] along each axis:
- Since we want a point [tex]\(\frac{3}{5}\)[/tex] of the way from [tex]\(A\)[/tex] to [tex]\(B\)[/tex], we can use the formula for finding a point dividing a line segment in a given ratio.
- The general formula for finding a point that divides the line joining [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in the ratio [tex]\(m:n\)[/tex] is given by:
[tex]\[ \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) \][/tex]
- Here, the ratio is [tex]\(\frac{3}{5}\)[/tex], so [tex]\(m = 3\)[/tex] and [tex]\(n = 2\)[/tex].

3. Apply the formula to find the x-coordinate and y-coordinate:
- The x-coordinate:
[tex]\[ x = x_1 + \frac{3}{5}(x_2 - x_1) = -9 + \frac{3}{5}(21 - (-9)) = -9 + \frac{3}{5}(30) = -9 + 18 = 9 \][/tex]
- The y-coordinate:
[tex]\[ y = y_1 + \frac{3}{5}(y_2 - y_1) = 3 + \frac{3}{5}(-2 - 3) = 3 + \frac{3}{5}(-5) = 3 + (-3) = 0 \][/tex]

4. Combine the coordinates to find the point:
- The point that is [tex]\(\frac{3}{5}\)[/tex] of the way from [tex]\(A\)[/tex] to [tex]\(B\)[/tex] has coordinates [tex]\((9, 0)\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{(9, 0)} \][/tex]