Answer :
Let's go through each part of the question step-by-step using the concept of the union of sets.
### Part (a) [tex]\( A \cup B \)[/tex]
Given:
- [tex]\( A = \{1, 2, 4\} \)[/tex]
- [tex]\( B = \{2, 4, 6, 8\} \)[/tex]
Solution:
1. List all unique elements in set [tex]\( A \)[/tex]: \{1, 2, 4\}
2. List all unique elements in set [tex]\( B \)[/tex]: \{2, 4, 6, 8\}
3. Combine the elements from both sets, ensuring no duplicates:
- Unique elements: \{1, 2, 4, 6, 8\}
Thus, [tex]\( A \cup B = \{1, 2, 4, 6, 8\} \)[/tex].
### Part (b) [tex]\( A \cup C \)[/tex]
Given:
- [tex]\( A = \{1, 2, 4\} \)[/tex]
- [tex]\( C = \{5, 7, 9\} \)[/tex]
Solution:
1. List all unique elements in set [tex]\( A \)[/tex]: \{1, 2, 4\}
2. List all unique elements in set [tex]\( C \)[/tex]: \{5, 7, 9\}
3. Combine the elements from both sets, ensuring no duplicates:
- Unique elements: \{1, 2, 4, 5, 7, 9\}
Thus, [tex]\( A \cup C = \{1, 2, 4, 5, 7, 9\} \)[/tex].
### Part (c) [tex]\( B \cup C \)[/tex]
Given:
- [tex]\( B = \{2, 4, 6, 8\} \)[/tex]
- [tex]\( C = \{5, 7, 9\} \)[/tex]
Solution:
1. List all unique elements in set [tex]\( B \)[/tex]: \{2, 4, 6, 8\}
2. List all unique elements in set [tex]\( C \)[/tex]: \{5, 7, 9\}
3. Combine the elements from both sets, ensuring no duplicates:
- Unique elements: \{2, 4, 5, 6, 7, 8, 9\}
Thus, [tex]\( B \cup C = \{2, 4, 5, 6, 7, 8, 9\} \)[/tex].
### Summary
Summarizing the results:
a. [tex]\( A \cup B = \{1, 2, 4, 6, 8\} \)[/tex]
b. [tex]\( A \cup C = \{1, 2, 4, 5, 7, 9\} \)[/tex]
c. [tex]\( B \cup C = \{2, 4, 5, 6, 7, 8, 9\} \)[/tex]
These are the unions of the given sets [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex].
### Part (a) [tex]\( A \cup B \)[/tex]
Given:
- [tex]\( A = \{1, 2, 4\} \)[/tex]
- [tex]\( B = \{2, 4, 6, 8\} \)[/tex]
Solution:
1. List all unique elements in set [tex]\( A \)[/tex]: \{1, 2, 4\}
2. List all unique elements in set [tex]\( B \)[/tex]: \{2, 4, 6, 8\}
3. Combine the elements from both sets, ensuring no duplicates:
- Unique elements: \{1, 2, 4, 6, 8\}
Thus, [tex]\( A \cup B = \{1, 2, 4, 6, 8\} \)[/tex].
### Part (b) [tex]\( A \cup C \)[/tex]
Given:
- [tex]\( A = \{1, 2, 4\} \)[/tex]
- [tex]\( C = \{5, 7, 9\} \)[/tex]
Solution:
1. List all unique elements in set [tex]\( A \)[/tex]: \{1, 2, 4\}
2. List all unique elements in set [tex]\( C \)[/tex]: \{5, 7, 9\}
3. Combine the elements from both sets, ensuring no duplicates:
- Unique elements: \{1, 2, 4, 5, 7, 9\}
Thus, [tex]\( A \cup C = \{1, 2, 4, 5, 7, 9\} \)[/tex].
### Part (c) [tex]\( B \cup C \)[/tex]
Given:
- [tex]\( B = \{2, 4, 6, 8\} \)[/tex]
- [tex]\( C = \{5, 7, 9\} \)[/tex]
Solution:
1. List all unique elements in set [tex]\( B \)[/tex]: \{2, 4, 6, 8\}
2. List all unique elements in set [tex]\( C \)[/tex]: \{5, 7, 9\}
3. Combine the elements from both sets, ensuring no duplicates:
- Unique elements: \{2, 4, 5, 6, 7, 8, 9\}
Thus, [tex]\( B \cup C = \{2, 4, 5, 6, 7, 8, 9\} \)[/tex].
### Summary
Summarizing the results:
a. [tex]\( A \cup B = \{1, 2, 4, 6, 8\} \)[/tex]
b. [tex]\( A \cup C = \{1, 2, 4, 5, 7, 9\} \)[/tex]
c. [tex]\( B \cup C = \{2, 4, 5, 6, 7, 8, 9\} \)[/tex]
These are the unions of the given sets [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex].