[tex]$XYZ$[/tex] Corporation invests \[tex]$10,000 into 91-day treasury bills with an interest rate of 1.5%. If the broker charges a \$[/tex]30 commission, what is the yield?

Yield = [tex]\(\frac{\text{amount invested} \times \text{interest rate} \times \left(\frac{\text{days invested}}{360}\right)}{\text{amount invested} \times \left(\frac{\text{days invested}}{360}\right) + \text{commission}}\)[/tex]

Give your answer as a percent rounded to the nearest hundredth.

[tex]\[ \boxed{\text{Enter}} \][/tex]



Answer :

To determine the yield on the investment made by XYZ Corporation, we will use the given yield formula:

[tex]\[ \text{yield} = \frac{\text{amount invested} \times \text{interest rate} \times \left(\frac{\text{days invested}}{360 \text{ days}}\right)}{\text{amount invested} \times \left(\frac{\text{days invested}}{360 \text{ days}}\right) + \text{commission}} \][/tex]

Let’s break down the problem step-by-step:

1. Identify the given values:

- Investment Amount: [tex]\( \text{amount invested} = \$10,000 \)[/tex]
- Interest Rate: [tex]\( \text{interest rate} = 1.5\% = 0.015 \)[/tex]
- Days Invested: [tex]\( \text{days invested} = 91 \text{ days} \)[/tex]
- Commission: [tex]\( \text{commission} = \$30 \)[/tex]
- Days in a Year (financial convention): [tex]\( 360 \text{ days} \)[/tex]

2. Calculate the numerator of the yield formula:

[tex]\[ \text{yield numerator} = \text{amount invested} \times \text{interest rate} \times \left(\frac{\text{days invested}}{360 \text{ days}}\right) \][/tex]

[tex]\[ \text{yield numerator} = 10000 \times 0.015 \times \left(\frac{91}{360}\right) \][/tex]

[tex]\[ \text{yield numerator} = 10000 \times 0.015 \times 0.2527777777777778 \][/tex]

[tex]\[ \text{yield numerator} \approx 37.92 \][/tex]

3. Calculate the denominator of the yield formula:

[tex]\[ \text{yield denominator} = \text{amount invested} \times \left(\frac{\text{days invested}}{360}\right) + \text{commission} \][/tex]

[tex]\[ \text{yield denominator} = 10000 \times \left(\frac{91}{360}\right) + 30 \][/tex]

[tex]\[ \text{yield denominator} = 10000 \times 0.2527777777777778 + 30 \][/tex]

[tex]\[ \text{yield denominator} \approx 2557.78 \][/tex]

4. Calculate the yield:

[tex]\[ \text{yield} = \frac{\text{yield numerator}}{\text{yield denominator}} \times 100 \][/tex]

[tex]\[ \text{yield} = \frac{37.92}{2557.78} \times 100 \][/tex]

[tex]\[ \text{yield} \approx 1.48\% \][/tex]

So, the yield on the investment is approximately [tex]\( 1.48\% \)[/tex] when rounded to the nearest hundredth percent.