Answer :
To determine the points through which the graph of [tex]\( f(y) = 12^y \)[/tex] passes, we need to evaluate the function at specific values of [tex]\( y \)[/tex].
1. When [tex]\( y = -1 \)[/tex]:
[tex]\[ f(-1) = 12^{-1} = \frac{1}{12} = 0.08333333333333333 \][/tex]
So, the graph passes through the point [tex]\((-1, 0.08333333333333333)\)[/tex].
2. When [tex]\( y = 0 \)[/tex]:
[tex]\[ f(0) = 12^0 = 1 \][/tex]
So, the graph passes through the point [tex]\((0, 1)\)[/tex].
3. When [tex]\( y = 1 \)[/tex]:
[tex]\[ f(1) = 12^1 = 12 \][/tex]
So, the graph passes through the point [tex]\((1, 12)\)[/tex].
Thus, the graph of [tex]\( f(y) = 12^y \)[/tex] passes through the points [tex]\((-1, 0.08333333333333333)\)[/tex], [tex]\((0, 1)\)[/tex], and [tex]\((1, 12)\)[/tex].
1. When [tex]\( y = -1 \)[/tex]:
[tex]\[ f(-1) = 12^{-1} = \frac{1}{12} = 0.08333333333333333 \][/tex]
So, the graph passes through the point [tex]\((-1, 0.08333333333333333)\)[/tex].
2. When [tex]\( y = 0 \)[/tex]:
[tex]\[ f(0) = 12^0 = 1 \][/tex]
So, the graph passes through the point [tex]\((0, 1)\)[/tex].
3. When [tex]\( y = 1 \)[/tex]:
[tex]\[ f(1) = 12^1 = 12 \][/tex]
So, the graph passes through the point [tex]\((1, 12)\)[/tex].
Thus, the graph of [tex]\( f(y) = 12^y \)[/tex] passes through the points [tex]\((-1, 0.08333333333333333)\)[/tex], [tex]\((0, 1)\)[/tex], and [tex]\((1, 12)\)[/tex].