If [tex]\( f(x) = x + 7 \)[/tex] and [tex]\( g(x) = \frac{1}{x-13} \)[/tex], what is the domain of [tex]\((f \times g)(x)\)[/tex]?

A. [tex]\( \{ x \mid x-6 \} \)[/tex]
B. [tex]\( \{ x \mid x \neq 8 \} \)[/tex]
C. [tex]\( \{ x \mid x \neq -13 \} \)[/tex]
D. [tex]\( \{ x \mid x \neq 13 \} \)[/tex]



Answer :

To determine the domain of the function [tex]\((f \times g)(x)\)[/tex], where [tex]\(f(x) = x + 7\)[/tex] and [tex]\(g(x) = \frac{1}{x - 13}\)[/tex], we need to consider the domains of the individual functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] and find their intersection within the context of the combined function [tex]\((f \times g)(x)\)[/tex].

1. Domain of [tex]\(f(x) = x + 7\)[/tex]:
- The function [tex]\(f(x) = x + 7\)[/tex] is a linear function.
- Linear functions are defined for all real numbers.
- Hence, the domain of [tex]\(f(x)\)[/tex] is all real numbers, i.e., [tex]\(\mathbb{R}\)[/tex].

2. Domain of [tex]\(g(x) = \frac{1}{x - 13}\)[/tex]:
- The function [tex]\(g(x) = \frac{1}{x - 13}\)[/tex] is a rational function.
- Rational functions are defined for all real numbers except where the denominator is zero.
- The denominator of [tex]\(g(x)\)[/tex] is [tex]\(x - 13\)[/tex], which is zero when [tex]\(x = 13\)[/tex].
- Hence, the domain of [tex]\(g(x)\)[/tex] is all real numbers except [tex]\(x = 13\)[/tex], i.e., [tex]\(\mathbb{R} \setminus \{13\}\)[/tex].

3. Domain of [tex]\((f \times g)(x) = f(x) \times g(x)\)[/tex]:
- To form [tex]\((f \times g)(x)\)[/tex], we multiply [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]: [tex]\((f \times g)(x) = (x + 7) \times \frac{1}{x - 13}\)[/tex].
- Since [tex]\(f(x)\)[/tex] is defined for all real numbers and [tex]\(g(x)\)[/tex] is defined for all real numbers except [tex]\(x = 13\)[/tex], the product [tex]\((f \times g)(x)\)[/tex] will be defined wherever both functions are defined.
- Therefore, [tex]\((f \times g)(x)\)[/tex] is defined for all real numbers except [tex]\(x = 13\)[/tex].

So, the domain of [tex]\((f \times g)(x)\)[/tex] is:

[tex]\[ x \ne 13 \][/tex]

Thus, the answer is:

[tex]\[ \boxed{x \ne 13} \][/tex]