To determine which side of triangle [tex]\( \triangle QRS \)[/tex] is the shortest, we need to consider the properties of the angles given. In any triangle, the side opposite the smallest angle is the shortest.
Let's list the given angles in [tex]\( \triangle QRS \)[/tex]:
- [tex]\( \angle Q = 70^\circ \)[/tex]
- [tex]\( \angle R = 44^\circ \)[/tex]
- [tex]\( \angle S = 66^\circ \)[/tex]
We can compare these angles to find the smallest angle:
- [tex]\( \angle Q = 70^\circ \)[/tex]
- [tex]\( \angle R = 44^\circ \)[/tex]
- [tex]\( \angle S = 66^\circ \)[/tex]
The smallest angle among these is [tex]\( \angle R = 44^\circ \)[/tex].
The side opposite to [tex]\( \angle R \)[/tex] is side [tex]\( QS \)[/tex].
Thus, the shortest side of [tex]\( \triangle QRS \)[/tex] is:
D. [tex]\( QS \)[/tex]