Find [tex]\( t(6) \)[/tex] in this piecewise function:

[tex]\[
t(x) =
\begin{cases}
-3x + 19 & \text{if } x \ \textless \ 4 \\
\frac{x}{2} + 5 & \text{if } x \geq 4
\end{cases}
\][/tex]

[tex]\[ t(6) = ? \][/tex]



Answer :

To find the value of [tex]\( t(6) \)[/tex] in the given piecewise function, we start by identifying which part of the function to use based on the value of [tex]\( x = 6 \)[/tex].

The function is defined as:
[tex]\[ y = \begin{cases} -3x + 19 & \text{if } x < 4 \\ \frac{x}{2} + 5 & \text{if } x \geq 4 \end{cases} \][/tex]

Since [tex]\( x = 6 \)[/tex] is greater than 4, we use the second part of the function:
[tex]\[ y = \frac{x}{2} + 5 \][/tex]

Now we substitute [tex]\( x = 6 \)[/tex] into this equation:
[tex]\[ y = \frac{6}{2} + 5 \][/tex]

First, we perform the division:
[tex]\[ \frac{6}{2} = 3 \][/tex]

Next, we add 5 to the result of the division:
[tex]\[ 3 + 5 = 8 \][/tex]

Therefore, the value of [tex]\( t(6) \)[/tex] is [tex]\( 8 \)[/tex].

So, [tex]\( t(6) = 8 \)[/tex].