Select the correct answer.

Multiply the binomials:
(3x + 4)(5x - 2)

A. [tex]\( 15x^2 - 14x - 8 \)[/tex]
B. [tex]\( 15x^2 + 14x + 8 \)[/tex]
C. [tex]\( 15x^2 + 20x - 8 \)[/tex]
D. [tex]\( 15x^2 + 14x - 8 \)[/tex]



Answer :

To multiply the binomials [tex]\((3x + 4)(5x - 2)\)[/tex], we use the distributive property (also known as the FOIL method for binomials):

1. First: Multiply the first terms in each binomial:
[tex]\[ 3x \cdot 5x = 15x^2 \][/tex]

2. Outer: Multiply the outer terms in each binomial:
[tex]\[ 3x \cdot (-2) = -6x \][/tex]

3. Inner: Multiply the inner terms in each binomial:
[tex]\[ 4 \cdot 5x = 20x \][/tex]

4. Last: Multiply the last terms in each binomial:
[tex]\[ 4 \cdot (-2) = -8 \][/tex]

Next, we combine all these results:

[tex]\[ 15x^2 - 6x + 20x - 8 \][/tex]

Combine the middle terms [tex]\(-6x\)[/tex] and [tex]\(20x\)[/tex]:

[tex]\[ -6x + 20x = 14x \][/tex]

Thus, the expanded form of the binomials is:

[tex]\[ 15x^2 + 14x - 8 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{15x^2 + 14x - 8} \][/tex]

So, the correct option is D.