Answer :
To determine which reflection will produce the given image, we need to analyze how the coordinates of the endpoints change during each type of reflection.
Initial Coordinates:
- Endpoint 1: [tex]\((-1, 4)\)[/tex]
- Endpoint 2: [tex]\((4, 1)\)[/tex]
Reflected Coordinates:
- Reflected Endpoint 1: [tex]\((-4, 1)\)[/tex]
- Reflected Endpoint 2: [tex]\((-1, -4)\)[/tex]
We’ll check each type of reflection to see which one matches the given transformed coordinates.
1. Reflection across the [tex]\(x\)[/tex]-axis:
- This transformation changes the sign of the [tex]\(y\)[/tex]-coordinate while keeping the [tex]\(x\)[/tex]-coordinate unchanged.
- Reflection of [tex]\((-1, 4)\)[/tex] across the [tex]\(x\)[/tex]-axis: [tex]\((-1, -4)\)[/tex]
- Reflection of [tex]\((4, 1)\)[/tex] across the [tex]\(x\)[/tex]-axis: [tex]\((4, -1)\)[/tex]
- The reflected points would be [tex]\((-1, -4)\)[/tex] and [tex]\((4, -1)\)[/tex].
- This does not match our required reflected coordinates [tex]\((-4, 1)\)[/tex] and [tex]\((-1, -4)\)[/tex].
2. Reflection across the [tex]\(y\)[/tex]-axis:
- This transformation changes the sign of the [tex]\(x\)[/tex]-coordinate while keeping the [tex]\(y\)[/tex]-coordinate unchanged.
- Reflection of [tex]\((-1, 4)\)[/tex] across the [tex]\(y\)[/tex]-axis: [tex]\((1, 4)\)[/tex]
- Reflection of [tex]\((4, 1)\)[/tex] across the [tex]\(y\)[/tex]-axis: [tex]\((-4, 1)\)[/tex]
- The reflected points would be [tex]\((1, 4)\)[/tex] and [tex]\((-4, 1)\)[/tex].
- This does not match our required coordinates either.
3. Reflection across the line [tex]\(y = x\)[/tex]:
- This transformation swaps the [tex]\(x\)[/tex]- and [tex]\(y\)[/tex]-coordinates.
- Reflection of [tex]\((-1, 4)\)[/tex] across the line [tex]\(y = x\)[/tex]: [tex]\((4, -1)\)[/tex]
- Reflection of [tex]\((4, 1)\)[/tex] across the line [tex]\(y = x\)[/tex]: [tex]\((1, 4)\)[/tex]
- The reflected points would be [tex]\((4, -1)\)[/tex] and [tex]\((1, 4)\)[/tex].
- This also does not match our required reflected coordinates.
4. Reflection across the line [tex]\(y = -x\)[/tex]:
- This transformation swaps the [tex]\(x\)[/tex]- and [tex]\(y\)[/tex]-coordinates and changes their signs.
- Reflection of [tex]\((-1, 4)\)[/tex] across the line [tex]\(y = -x\)[/tex]: [tex]\((-4, -1)\)[/tex]
- Reflection of [tex]\((4, 1)\)[/tex] across the line [tex]\(y = -x\)[/tex]: [tex]\((-1, -4)\)[/tex]
- The reflected points would be [tex]\((-4, -1)\)[/tex] and [tex]\((-1, -4)\)[/tex], which do not match our required coordinates either.
Since none of the standard reflections (across [tex]\(x\)[/tex]-axis, [tex]\(y\)[/tex]-axis, [tex]\(y = x\)[/tex], or [tex]\(y = -x\)[/tex]) produce the reflected coordinates [tex]\((-4, 1)\)[/tex] and [tex]\((-1, -4)\)[/tex], we can conclude that none of these reflections result in the specified transformation.
Thus, the correct answer is:
[tex]\[ \boxed{\text{None}} \][/tex]
Initial Coordinates:
- Endpoint 1: [tex]\((-1, 4)\)[/tex]
- Endpoint 2: [tex]\((4, 1)\)[/tex]
Reflected Coordinates:
- Reflected Endpoint 1: [tex]\((-4, 1)\)[/tex]
- Reflected Endpoint 2: [tex]\((-1, -4)\)[/tex]
We’ll check each type of reflection to see which one matches the given transformed coordinates.
1. Reflection across the [tex]\(x\)[/tex]-axis:
- This transformation changes the sign of the [tex]\(y\)[/tex]-coordinate while keeping the [tex]\(x\)[/tex]-coordinate unchanged.
- Reflection of [tex]\((-1, 4)\)[/tex] across the [tex]\(x\)[/tex]-axis: [tex]\((-1, -4)\)[/tex]
- Reflection of [tex]\((4, 1)\)[/tex] across the [tex]\(x\)[/tex]-axis: [tex]\((4, -1)\)[/tex]
- The reflected points would be [tex]\((-1, -4)\)[/tex] and [tex]\((4, -1)\)[/tex].
- This does not match our required reflected coordinates [tex]\((-4, 1)\)[/tex] and [tex]\((-1, -4)\)[/tex].
2. Reflection across the [tex]\(y\)[/tex]-axis:
- This transformation changes the sign of the [tex]\(x\)[/tex]-coordinate while keeping the [tex]\(y\)[/tex]-coordinate unchanged.
- Reflection of [tex]\((-1, 4)\)[/tex] across the [tex]\(y\)[/tex]-axis: [tex]\((1, 4)\)[/tex]
- Reflection of [tex]\((4, 1)\)[/tex] across the [tex]\(y\)[/tex]-axis: [tex]\((-4, 1)\)[/tex]
- The reflected points would be [tex]\((1, 4)\)[/tex] and [tex]\((-4, 1)\)[/tex].
- This does not match our required coordinates either.
3. Reflection across the line [tex]\(y = x\)[/tex]:
- This transformation swaps the [tex]\(x\)[/tex]- and [tex]\(y\)[/tex]-coordinates.
- Reflection of [tex]\((-1, 4)\)[/tex] across the line [tex]\(y = x\)[/tex]: [tex]\((4, -1)\)[/tex]
- Reflection of [tex]\((4, 1)\)[/tex] across the line [tex]\(y = x\)[/tex]: [tex]\((1, 4)\)[/tex]
- The reflected points would be [tex]\((4, -1)\)[/tex] and [tex]\((1, 4)\)[/tex].
- This also does not match our required reflected coordinates.
4. Reflection across the line [tex]\(y = -x\)[/tex]:
- This transformation swaps the [tex]\(x\)[/tex]- and [tex]\(y\)[/tex]-coordinates and changes their signs.
- Reflection of [tex]\((-1, 4)\)[/tex] across the line [tex]\(y = -x\)[/tex]: [tex]\((-4, -1)\)[/tex]
- Reflection of [tex]\((4, 1)\)[/tex] across the line [tex]\(y = -x\)[/tex]: [tex]\((-1, -4)\)[/tex]
- The reflected points would be [tex]\((-4, -1)\)[/tex] and [tex]\((-1, -4)\)[/tex], which do not match our required coordinates either.
Since none of the standard reflections (across [tex]\(x\)[/tex]-axis, [tex]\(y\)[/tex]-axis, [tex]\(y = x\)[/tex], or [tex]\(y = -x\)[/tex]) produce the reflected coordinates [tex]\((-4, 1)\)[/tex] and [tex]\((-1, -4)\)[/tex], we can conclude that none of these reflections result in the specified transformation.
Thus, the correct answer is:
[tex]\[ \boxed{\text{None}} \][/tex]