Line [tex]\( AB \)[/tex] contains points [tex]\( A(0,1) \)[/tex] and [tex]\( B(1,5) \)[/tex]. The slope of line [tex]\( AB \)[/tex] is:

A. [tex]\(-4\)[/tex]
B. [tex]\(\frac{-1}{4}\)[/tex]
C. [tex]\(\frac{1}{4}\)[/tex]
D. 4



Answer :

To determine the slope of the line passing through two points [tex]\( A(0, 1) \)[/tex] and [tex]\( B(1, 5) \)[/tex], we use the formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

For our given points [tex]\( A(0, 1) \)[/tex] and [tex]\( B(1, 5) \)[/tex], we can substitute the coordinates into the formula:

- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( y_1 = 1 \)[/tex]
- [tex]\( x_2 = 1 \)[/tex]
- [tex]\( y_2 = 5 \)[/tex]

Now, plug these values into the slope formula:

[tex]\[ m = \frac{5 - 1}{1 - 0} \][/tex]

Simplify the numerator:

[tex]\[ 5 - 1 = 4 \][/tex]

Simplify the denominator:

[tex]\[ 1 - 0 = 1 \][/tex]

So, the slope calculation becomes:

[tex]\[ m = \frac{4}{1} = 4 \][/tex]

Thus, the slope of line [tex]\( AB \)[/tex] is:

[tex]\[ \boxed{4} \][/tex]