To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 8x - 2y = 48 \)[/tex] when [tex]\( y = 4 \)[/tex], follow these steps:
1. Substitute [tex]\( y = 4 \)[/tex] into the equation:
[tex]\[
8x - 2(4) = 48
\][/tex]
2. Simplify the expression:
[tex]\[
8x - 8 = 48
\][/tex]
3. Add 8 to both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[
8x - 8 + 8 = 48 + 8
\][/tex]
This simplifies to:
[tex]\[
8x = 56
\][/tex]
4. Finally, divide both sides by 8 to solve for [tex]\( x \)[/tex]:
[tex]\[
x = \frac{56}{8}
\][/tex]
Simplifying this gives:
[tex]\[
x = 7
\][/tex]
Therefore, the value of [tex]\( x \)[/tex] when [tex]\( y = 4 \)[/tex] is [tex]\( 7 \)[/tex]. Thus, the correct answer is [tex]\( 7 \)[/tex].