Answered

What is the value of [tex]\(x\)[/tex] in the equation [tex]\(8x - 2y = 48\)[/tex] when [tex]\(y = 4\)[/tex]?

A. 6
B. 7
C. 14
D. 48



Answer :

To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 8x - 2y = 48 \)[/tex] when [tex]\( y = 4 \)[/tex], follow these steps:

1. Substitute [tex]\( y = 4 \)[/tex] into the equation:
[tex]\[ 8x - 2(4) = 48 \][/tex]

2. Simplify the expression:
[tex]\[ 8x - 8 = 48 \][/tex]

3. Add 8 to both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 8x - 8 + 8 = 48 + 8 \][/tex]
This simplifies to:
[tex]\[ 8x = 56 \][/tex]

4. Finally, divide both sides by 8 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{56}{8} \][/tex]
Simplifying this gives:
[tex]\[ x = 7 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] when [tex]\( y = 4 \)[/tex] is [tex]\( 7 \)[/tex]. Thus, the correct answer is [tex]\( 7 \)[/tex].