On a number line, the directed line segment from [tex]\(Q\)[/tex] to [tex]\(S\)[/tex] has endpoints [tex]\(Q\)[/tex] at -14 and [tex]\(S\)[/tex] at 2. Point [tex]\(R\)[/tex] partitions the directed line segment from [tex]\(Q\)[/tex] to [tex]\(S\)[/tex] in a 3:5 ratio.

Which expression correctly uses the formula [tex]\(\left(\frac{m}{m+n}\right)(x_2-x_1)+x_1\)[/tex] to find the location of point [tex]\(R\)[/tex]?

A. [tex]\(\left(\frac{3}{3+5}\right)(2-(-14))+(-14)\)[/tex]

B. [tex]\(\left(\frac{3}{3+5}\right)(-14-2)+2\)[/tex]

C. [tex]\(\left(\frac{3}{3+5}\right)(2-14)+14\)[/tex]

D. [tex]\(\left(\frac{3}{3+5}\right)(-14-2)-2\)[/tex]



Answer :

Sure, let's solve this step by step.

We are given the points [tex]\( Q \)[/tex] and [tex]\( S \)[/tex] on a number line:

[tex]\[ Q = -14 \][/tex]
[tex]\[ S = 2 \][/tex]

The ratio in which point [tex]\( R \)[/tex] partitions the segment is given as [tex]\( 3:5 \)[/tex], so [tex]\( m = 3 \)[/tex] and [tex]\( n = 5 \)[/tex].

We need to use the formula:

[tex]\[ \left(\frac{m}{m+n}\right) (x_2 - x_1) + x_1 \][/tex]

where:

- [tex]\( x_1 = Q = -14 \)[/tex]
- [tex]\( x_2 = S = 2 \)[/tex]
- [tex]\( m = 3 \)[/tex]
- [tex]\( n = 5 \)[/tex]

Substitute the given values into the formula:

[tex]\[ \left(\frac{3}{3+5}\right) (2 - (-14)) + (-14) \][/tex]

First, compute the denominator in the fraction:

[tex]\[ 3 + 5 = 8 \][/tex]

Next, compute the difference inside the parentheses:

[tex]\[ 2 - (-14) = 2 + 14 = 16 \][/tex]

Substitute these values back into the formula:

[tex]\[ \left(\frac{3}{8}\right) \cdot 16 + (-14) \][/tex]

Now, perform the multiplication:

[tex]\[ \frac{3}{8} \cdot 16 = 6 \][/tex]

Finally, add this value to [tex]\(-14\)[/tex]:

[tex]\[ 6 + (-14) = -8 \][/tex]

Thus, the correct expression is:

[tex]\[ \left(\frac{3}{3+5}\right) (2 - (-14)) + (-14) \][/tex]

So, the answer is:

[tex]\[ \left(\frac{3}{3+5}\right) (2 - (-14)) + (-14) \][/tex]

Hence, the correct expression using the formula is:

[tex]\[ \left(\frac{3}{3+5}\right) (2-(-14)) + (-14) \][/tex]

And the expression simplifies to:

[tex]\[ -8 \][/tex]

Therefore, the correct answer from the given options is:

[tex]\[ \left(\frac{3}{3+5}\right)(2-(-14))+(-14) \][/tex]