Select the correct answer.

Simplify the expression and classify the resulting polynomial:

[tex]\[ \left(3x^2 - 11x - 4\right) - \left(2x^2 - x - 6\right) \][/tex]

A. quadratic trinomial
B. linear binomial
C. quadratic binomial
D. linear monomial



Answer :

To simplify the expression [tex]\(\left(3x^2 - 11x - 4\right) - \left(2x^2 - x - 6\right)\)[/tex] and determine the classification of the resulting polynomial, let's proceed step-by-step.

### Step 1: Distribute the Negative Sign:
We need to distribute the negative sign through the second polynomial:
[tex]\[ \left(3x^2 - 11x - 4\right) - \left(2x^2 - x - 6\right) \][/tex]
This can be rewritten as:
[tex]\[ 3x^2 - 11x - 4 - 2x^2 + x + 6 \][/tex]

### Step 2: Combine Like Terms:
Now, we need to combine like terms. Group the terms involving [tex]\(x^2\)[/tex], [tex]\(x\)[/tex], and the constant terms separately.
[tex]\[ (3x^2 - 2x^2) + (-11x + x) + (-4 + 6) \][/tex]

### Step 3: Simplify Each Group:
Simplify each group of like terms:
[tex]\[ (3x^2 - 2x^2) = x^2 \][/tex]
[tex]\[ (-11x + x) = -10x \][/tex]
[tex]\[ (-4 + 6) = 2 \][/tex]

### Step 4: Form the Simplified Expression:
Combine the simplified terms:
[tex]\[ x^2 - 10x + 2 \][/tex]

### Step 5: Determine the Classification of the Polynomial:
Now, we analyze the simplified polynomial [tex]\(x^2 - 10x + 2\)[/tex]:
- The degree of this polynomial is 2 (since the highest power of [tex]\(x\)[/tex] is [tex]\(x^2\)[/tex]).
- The number of terms is 3 (specifically, [tex]\(x^2\)[/tex], [tex]\(-10x\)[/tex], and [tex]\(2\)[/tex]).

### Classification:
A polynomial with a degree of 2 (quadratic) and three terms (trinomial) is classified as a quadratic trinomial.

Therefore, the correct answer is:
[tex]\[ \boxed{\text{A. quadratic trinomial}} \][/tex]