Subtract these polynomials:

[tex]\[
\left(4x^2 - x + 6\right) - \left(x^2 + 3\right) =
\][/tex]

A. [tex]\(3x^2 - x + 3\)[/tex]

B. [tex]\(5x^2 - x + 9\)[/tex]

C. [tex]\(4x^2 - 2x + 9\)[/tex]

D. [tex]\(4x^2 - 2x + 3\)[/tex]



Answer :

To subtract the given polynomials [tex]\((4x^2 - x + 6) - (x^2 + 3)\)[/tex], let's go through the operation step by step.

### Step 1: Write Down the Polynomials
The first polynomial is:
[tex]\[4x^2 - x + 6\][/tex]

The second polynomial is:
[tex]\[x^2 + 3\][/tex]

### Step 2: Subtraction of Corresponding Terms
We'll subtract the second polynomial from the first polynomial by subtracting corresponding terms.

1. Subtract the [tex]\(x^2\)[/tex] terms:
[tex]\[4x^2 - x^2\][/tex]
Simplifies to:
[tex]\[3x^2\][/tex]

2. Subtract the [tex]\(x\)[/tex] terms:
Here, the first polynomial has a [tex]\(-x\)[/tex] term and the second polynomial does not have an [tex]\(x\)[/tex] term. So:
[tex]\[-x - 0\][/tex]
Simplifies to:
[tex]\[-x\][/tex]

3. Subtract the constant terms:
[tex]\[6 - 3\][/tex]
Simplifies to:
[tex]\[3\][/tex]

### Step 3: Combine the Results
Combining the results from each step, we get:
[tex]\[3x^2 - x + 3\][/tex]

### Step 4: Match with the Given Options
Now let's match this result with the provided options.

A. [tex]\(3x^2 - x + 3\)[/tex]

B. [tex]\(5x^2 - x + 9\)[/tex]

C. [tex]\(4x^2 - 2x + 9\)[/tex]

D. [tex]\(4x^2 - 2x + 3\)[/tex]

The correct matching option is:
A. [tex]\(3x^2 - x + 3\)[/tex]

### Final Answer
Therefore, the result of the subtraction [tex]\((4x^2 - x + 6) - (x^2 + 3)\)[/tex] is:
[tex]\[ \boxed{3x^2 - x + 3} \][/tex]

So, the correct option is:
[tex]\[ A. 3x^2 - x + 3 \][/tex]