Determine the equation of the quadratic function that models the height of the ball [tex]\( h(t) \)[/tex] at time [tex]\( t \)[/tex].

Given:
- After 1 second, the ball is 10 feet high.
- After 4 seconds, the ball is 10 feet high.

Options:
A. [tex]\( h(t) = 4(t + 4)^2 + 46 \)[/tex]
B. [tex]\( h(t) = -4(t - 4)^2 + 46 \)[/tex]
C. [tex]\( h(t) = 2(t + 3)^2 + 46 \)[/tex]
D. [tex]\( h(t) = -2(t - 3)^2 + 46 \)[/tex]



Answer :

To determine which quadratic function [tex]\( h(t) \)[/tex] models the height of the ball, we need to evaluate each given quadratic function at [tex]\( t = 1 \)[/tex] and [tex]\( t = 4 \)[/tex] and check if both evaluations yield a height of 10 feet. The given functions are:

1. [tex]\( h(t) = 4(t+4)^2 + 46 \)[/tex]
2. [tex]\( h(t) = -4(t-4)^2 + 46 \)[/tex]
3. [tex]\( h(t) = 2(t+3)^2 + 46 \)[/tex]
4. [tex]\( h(t) = -2(t-3)^2 + 46 \)[/tex]

Let's evaluate these functions step by step.

### 1. Evaluating [tex]\( h(t) = 4(t+4)^2 + 46 \)[/tex]

#### For [tex]\( t = 1 \)[/tex]:
[tex]\[ h(1) = 4(1+4)^2 + 46 \][/tex]
[tex]\[ = 4(5)^2 + 46 \][/tex]
[tex]\[ = 4(25) + 46 \][/tex]
[tex]\[ = 100 + 46 \][/tex]
[tex]\[ = 146 \][/tex]

#### For [tex]\( t = 4 \)[/tex]:
[tex]\[ h(4) = 4(4+4)^2 + 46 \][/tex]
[tex]\[ = 4(8)^2 + 46 \][/tex]
[tex]\[ = 4(64) + 46 \][/tex]
[tex]\[ = 256 + 46 \][/tex]
[tex]\[ = 302 \][/tex]

So, this model does not fit since neither [tex]\( h(1) \)[/tex] nor [tex]\( h(4) \)[/tex] equals 10.

### 2. Evaluating [tex]\( h(t) = -4(t-4)^2 + 46 \)[/tex]

#### For [tex]\( t = 1 \)[/tex]:
[tex]\[ h(1) = -4(1-4)^2 + 46 \][/tex]
[tex]\[ = -4(-3)^2 + 46 \][/tex]
[tex]\[ = -4(9) + 46 \][/tex]
[tex]\[ = -36 + 46 \][/tex]
[tex]\[ = 10 \][/tex]

#### For [tex]\( t = 4 \)[/tex]:
[tex]\[ h(4) = -4(4-4)^2 + 46 \][/tex]
[tex]\[ = -4(0)^2 + 46 \][/tex]
[tex]\[ = 0 + 46 \][/tex]
[tex]\[ = 46 \][/tex]

Again, this model does not fit since [tex]\( h(4) \neq 10 \)[/tex].

### 3. Evaluating [tex]\( h(t) = 2(t+3)^2 + 46 \)[/tex]

#### For [tex]\( t = 1 \)[/tex]:
[tex]\[ h(1) = 2(1+3)^2 + 46 \][/tex]
[tex]\[ = 2(4)^2 + 46 \][/tex]
[tex]\[ = 2(16) + 46 \][/tex]
[tex]\[ = 32 + 46 \][/tex]
[tex]\[ = 78 \][/tex]

#### For [tex]\( t = 4 \)[/tex]:
[tex]\[ h(4) = 2(4+3)^2 + 46 \][/tex]
[tex]\[ = 2(7)^2 + 46 \][/tex]
[tex]\[ = 2(49) + 46 \][/tex]
[tex]\[ = 98 + 46 \][/tex]
[tex]\[ = 144 \][/tex]

This model also does not fit since neither [tex]\( h(1) \)[/tex] nor [tex]\( h(4) \)[/tex] equals 10.

### 4. Evaluating [tex]\( h(t) = -2(t-3)^2 + 46 \)[/tex]

#### For [tex]\( t = 1 \)[/tex]:
[tex]\[ h(1) = -2(1-3)^2 + 46 \][/tex]
[tex]\[ = -2(-2)^2 + 46 \][/tex]
[tex]\[ = -2(4) + 46 \][/tex]
[tex]\[ = -8 + 46 \][/tex]
[tex]\[ = 38 \][/tex]

#### For [tex]\( t = 4 \)[/tex]:
[tex]\[ h(4) = -2(4-3)^2 + 46 \][/tex]
[tex]\[ = -2(1)^2 + 46 \][/tex]
[tex]\[ = -2(1) + 46 \][/tex]
[tex]\[ = -2 + 46 \][/tex]
[tex]\[ = 44 \][/tex]

This model also does not fit since neither [tex]\( h(1) \)[/tex] nor [tex]\( h(4) \)[/tex] equals 10.

### Conclusion

After evaluating all given functions, none of them satisfies the condition that both [tex]\( h(1) \)[/tex] and [tex]\( h(4) \)[/tex] equal 10. Therefore, there is no quadratic function among the given options that accurately models the height of the ball at the specified times.