What is the quotient?

[tex]\[
\frac{3y + 2}{3y} \div \frac{6y^2 + 4y}{3y + 2}
\][/tex]

A. [tex][tex]$\frac{1}{2y}$[/tex][/tex]
B. [tex][tex]$\frac{3y + 2}{6y^2}$[/tex][/tex]
C. [tex][tex]$\frac{1}{y}$[/tex][/tex]
D. [tex][tex]$\frac{2(3y + 2)}{3}$[/tex][/tex]



Answer :

Let's find the quotient of the given expression step by step.

We have to determine the quotient:
[tex]\[ \frac{3y + 2}{3y} \div \frac{6y^2 + 4y}{3y + 2} \][/tex]

### Step 1: Rewrite the division as multiplication by the reciprocal
We can rewrite the division of fractions as multiplication by the reciprocal of the second fraction.
[tex]\[ \frac{3y + 2}{3y} \div \frac{6y^2 + 4y}{3y + 2} = \frac{3y + 2}{3y} \times \frac{3y + 2}{6y^2 + 4y} \][/tex]

### Step 2: Factor denominators and numerators where possible
Let's factor the denominator of the second fraction.
[tex]\[ 6y^2 + 4y = 2y(3y + 2) \][/tex]

Now, update the expression:
[tex]\[ \frac{3y + 2}{3y} \times \frac{3y + 2}{2y(3y + 2)} \][/tex]

### Step 3: Simplify by canceling common terms
We can cancel the common factor of [tex]\(3y + 2\)[/tex] in the numerator and the denominator of the second fraction:
[tex]\[ \frac{3y + 2}{3y} \times \frac{3y + 2}{2y(3y + 2)} = \frac{3y + 2}{3y} \times \frac{1}{2y} \][/tex]
[tex]\[ = \frac{3y + 2}{3y} \times \frac{1}{2y} = \frac{3y + 2}{6y^2} \][/tex]

Thus, the quotient is:
[tex]\[ \frac{3y + 2}{6y^2} \][/tex]

### Final Answer
The correct quotient is:
[tex]\[ \boxed{\frac{3y + 2}{6y^2}} \][/tex]