Determine the function's value when [tex][tex]$x=-1$[/tex][/tex]

\begin{tabular}{|c|c|}
\hline
\multicolumn{2}{|c|}{[tex][tex]$g(x)=x^3+6x^2+12x+8$[/tex][/tex]} \\
\hline
-3 & [tex][tex]$g(x)$[/tex][/tex] \\
\hline
-2 & -1 \\
\hline
0 & 0 \\
\hline
2 & 8 \\
\hline
3 & 64 \\
\hline
\end{tabular}

A. [tex][tex]$g(-1)=-3$[/tex][/tex]
B. [tex][tex]$g(-1)=0$[/tex][/tex]
C. [tex][tex]$g(-1)=1$[/tex][/tex]
D. [tex][tex]$g(-1)=27$[/tex][/tex]



Answer :

To determine the function's value when [tex]\(x = -1\)[/tex] for the function [tex]\( g(x) = x^3 + 6x^2 + 12x + 8 \)[/tex], we can follow these steps:

1. Substitute [tex]\( x = -1 \)[/tex] into the function:

[tex]\[ g(-1) = (-1)^3 + 6(-1)^2 + 12(-1) + 8 \][/tex]

2. Calculate each term separately:

- [tex]\((-1)^3 = -1\)[/tex]
- [tex]\(6(-1)^2 = 6 \cdot 1 = 6\)[/tex]
- [tex]\(12(-1) = -12\)[/tex]
- The constant [tex]\(8\)[/tex] remains [tex]\(8\)[/tex]

3. Combine these results:

[tex]\[ g(-1) = -1 + 6 - 12 + 8 \][/tex]

4. Perform the addition and subtraction step by step:

- First, combine [tex]\(-1\)[/tex] and [tex]\(6\)[/tex]:

[tex]\[ -1 + 6 = 5 \][/tex]

- Next, subtract [tex]\(12\)[/tex] from [tex]\(5\)[/tex]:

[tex]\[ 5 - 12 = -7 \][/tex]

- Finally, add [tex]\(8\)[/tex] to [tex]\(-7\)[/tex]:

[tex]\[ -7 + 8 = 1 \][/tex]

So, the value of the function [tex]\( g(x) \)[/tex] when [tex]\( x = -1 \)[/tex] is [tex]\( g(-1) = 1 \)[/tex].

Therefore, the correct answer is:

[tex]\[ g(-1) = 1 \][/tex]