A book with a mass of 0.5 kilograms is pushed across a table with a force of 20 newtons. What is the acceleration of the book?

A. [tex][tex]$4 \, m/s^2$[/tex][/tex]
B. [tex][tex]$10 \, m/s^2$[/tex][/tex]
C. [tex][tex]$0.025 \, m/s^2$[/tex][/tex]
D. [tex][tex]$40 \, m/s^2$[/tex][/tex]



Answer :

To determine the acceleration of the book, we can use Newton's second law of motion, which states:

[tex]\[ F = ma \][/tex]

where:
- [tex]\( F \)[/tex] is the force applied
- [tex]\( m \)[/tex] is the mass of the object
- [tex]\( a \)[/tex] is the acceleration

We need to rearrange the formula to solve for acceleration ([tex]\( a \)[/tex]):

[tex]\[ a = \frac{F}{m} \][/tex]

Given:
- The mass of the book [tex]\( m \)[/tex] is 0.5 kilograms
- The force applied [tex]\( F \)[/tex] is 20 newtons

Substitute these values into the formula:

[tex]\[ a = \frac{20 \, \text{N}}{0.5 \, \text{kg}} \][/tex]

Dividing the force by the mass:

[tex]\[ a = 40 \, \text{m/s}^2 \][/tex]

Therefore, the acceleration of the book is:

[tex]\[ \boxed{40 \, \text{m/s}^2} \][/tex]

So the correct answer is:
D. [tex]\( 40 \, \text{m/s}^2 \)[/tex]