A tire rim has a diameter of [tex][tex]$15 \, \text{in}$[/tex][/tex]. What is the circumference of the tire rim? Use 3.14 for [tex][tex]$\pi$[/tex][/tex].

A. 23.55 in.
B. 46.10 in.
C. 47.1 in.
D. 94.2 in.



Answer :

To determine the circumference of a tire rim with a given diameter, we will use the formula for the circumference of a circle, which is:

[tex]\[ C = \pi \times d \][/tex]

where:
- [tex]\( C \)[/tex] represents the circumference,
- [tex]\( \pi \)[/tex] (pi) is a constant approximately equal to [tex]\( 3.14 \)[/tex],
- [tex]\( d \)[/tex] is the diameter of the circle.

Given that the diameter [tex]\( d \)[/tex] of the tire rim is [tex]\( 15 \)[/tex] inches, we substitute the values into the formula:

[tex]\[ C = 3.14 \times 15 \][/tex]

Multiplying these values:

[tex]\[ C = 47.1 \][/tex]

Therefore, the circumference of the tire rim is:

[tex]\[ 47.1 \, \text{inches} \][/tex]

So the correct answer is [tex]\( 47.1 \)[/tex] inches.