If [tex][tex]$\sin \theta\ \textless \ 0$[/tex][/tex] and [tex][tex]$\tan \theta\ \textless \ 0$[/tex][/tex], then:

A. [tex][tex]$90^{\circ}\ \textless \ \theta\ \textless \ 180^{\circ}$[/tex][/tex]
B. [tex][tex]$270^{\circ}\ \textless \ \theta\ \textless \ 360^{\circ}$[/tex][/tex]
C. [tex][tex]$0^{\circ}\ \textless \ \theta\ \textless \ 90^{\circ}$[/tex][/tex]
D. [tex][tex]$180^{\circ}\ \textless \ \theta\ \textless \ 270^{\circ}$[/tex][/tex]



Answer :

To determine the correct range for [tex]\(\theta\)[/tex] where both [tex]\(\sin \theta < 0\)[/tex] and [tex]\(\tan \theta < 0\)[/tex], we need to understand the behavior of these trigonometric functions in different quadrants.

1. Sine function ([tex]\(\sin \theta\)[/tex]):
- [tex]\(\sin \theta > 0\)[/tex] in the first and second quadrants.
- [tex]\(\sin \theta < 0\)[/tex] in the third and fourth quadrants.

2. Tangent function ([tex]\(\tan \theta\)[/tex]):
- [tex]\(\tan \theta > 0\)[/tex] in the first and third quadrants.
- [tex]\(\tan \theta < 0\)[/tex] in the second and fourth quadrants.

Now, let's analyze the conditions given:

- [tex]\(\sin \theta < 0\)[/tex] implies [tex]\(\theta\)[/tex] must be in the third or fourth quadrant.
- [tex]\(\tan \theta < 0\)[/tex] implies [tex]\(\theta\)[/tex] must be in the second or fourth quadrant.

The only quadrant where both conditions ([tex]\(\sin \theta < 0\)[/tex] and [tex]\(\tan \theta < 0\)[/tex]) are satisfied is in the fourth quadrant.

In the fourth quadrant, the range of [tex]\(\theta\)[/tex] is [tex]\(270^\circ < \theta < 360^\circ\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{270^\circ < \theta < 360^\circ} \][/tex]

This corresponds to option B:
[tex]\[ \text{B. } 270^\circ < \theta < 360^\circ \][/tex]