Which of the following is the quotient of the rational expressions shown below?

[tex]\[
\frac{4x}{2x-1} \div \frac{3x+2}{x+5}
\][/tex]

A. [tex][tex]$\frac{12 x^2 + 8 x}{2 x^2 + 9 x - 5}$[/tex][/tex]

B. [tex][tex]$\frac{4 x^2 + 20 x}{6 x^2 + x - 2}$[/tex][/tex]

C. [tex][tex]$\frac{5 x + 5}{2 x^2 - 5}$[/tex][/tex]

D. [tex][tex]$\frac{5 x + 5}{5 x + 1}$[/tex][/tex]



Answer :

To determine the quotient of the rational expressions [tex]\(\frac{4x}{2x-1} \div \frac{3x+2}{x+5}\)[/tex], we need to follow these steps:

1. Rewrite the division as multiplication: The division of fractions can be rewritten as the multiplication of the first fraction by the reciprocal of the second fraction.
[tex]\[ \frac{4x}{2x-1} \div \frac{3x+2}{x+5} = \frac{4x}{2x-1} \times \frac{x+5}{3x+2} \][/tex]

2. Multiply the numerators together:
[tex]\[ \text{Numerator: } 4x \times (x + 5) = 4x(x + 5) = 4x^2 + 20x \][/tex]

3. Multiply the denominators together:
[tex]\[ \text{Denominator: } (2x-1) \times (3x+2) \][/tex]

Now we need to expand the product of the denominators:
[tex]\[ (2x-1)(3x+2) = 2x \cdot 3x + 2x \cdot 2 - 1 \cdot 3x - 1 \cdot 2 \][/tex]
[tex]\[ (2x-1)(3x+2) = 6x^2 + 4x - 3x - 2 \][/tex]
[tex]\[ (2x-1)(3x+2) = 6x^2 + x - 2 \][/tex]

4. Combine the results to form the quotient:
[tex]\[ \frac{4x^2 + 20x}{6x^2 + x - 2} \][/tex]

So, the quotient of [tex]\(\frac{4x}{2x-1} \div \frac{3x+2}{x+5}\)[/tex] simplifies to:
[tex]\[ \frac{4x^2 + 20x}{6x^2 + x - 2} \][/tex]

Looking at the answer choices provided, the correct one is:
[tex]\[ \boxed{\frac{4x^2 + 20x}{6x^2 + x - 2}} \][/tex]