The table uses the following two patterns:

Pattern [tex][tex]$x$[/tex][/tex]: Starting number: 3, Rule: add 3

Pattern [tex][tex]$y$[/tex][/tex]: Starting number: 6, Rule: add 6

Complete the table for the given patterns.

\begin{tabular}{cc}
[tex][tex]$x$[/tex][/tex] & [tex][tex]$y$[/tex][/tex] \\
\hline
3 & 6 \\
\hline
6 & 12 \\
\hline
9 & [tex][tex]$\square$[/tex][/tex] \\
\hline
\end{tabular}

Plot the ordered pairs [tex][tex]$(x, y)$[/tex][/tex] from the table on the following graph.



Answer :

Let's solve the problem step-by-step. We will complete the table using the given starting numbers and rules for both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] patterns.

### Step-by-Step Solution:

#### Step 1: Understand the patterns

1. Pattern [tex]\(x\)[/tex]:
- Starting number: 3
- Rule: Add 3 each time

2. Pattern [tex]\(y\)[/tex]:
- Starting number: 6
- Rule: Add 6 each time

#### Step 2: Generate the [tex]\(x\)[/tex]-values using Pattern [tex]\(x\)[/tex]

- Starting number is 3.
- Following the rule of adding 3 each time:
1. First value: [tex]\(3\)[/tex]
2. Second value: [tex]\(3 + 3 = 6\)[/tex]
3. Third value: [tex]\(6 + 3 = 9\)[/tex]

Thus, the [tex]\(x\)[/tex]-values are [tex]\(3, 6, 9\)[/tex].

#### Step 3: Generate the [tex]\(y\)[/tex]-values using Pattern [tex]\(y\)[/tex]

- Starting number is 6.
- Following the rule of adding 6 each time:
1. First value: [tex]\(6\)[/tex]
2. Second value: [tex]\(6 + 6 = 12\)[/tex]
3. Third value: [tex]\(12 + 6 = 18\)[/tex]

Thus, the [tex]\(y\)[/tex]-values are [tex]\(6, 12, 18\)[/tex].

#### Step 4: Complete the table

Filling in the values derived from patterns:

[tex]\[ \begin{array}{cc} x & y \\ \hline 3 & 6 \\ \hline 6 & 12 \\ \hline 9 & 18 \\ \hline \end{array} \][/tex]

### Step 5: Plot the ordered pairs [tex]\((x, y)\)[/tex] on the graph

The ordered pairs from the table are:
- [tex]\((3, 6)\)[/tex]
- [tex]\((6, 12)\)[/tex]
- [tex]\((9, 18)\)[/tex]

With these pairs, plot each point on the coordinate plane:

1. Plot the point [tex]\((3, 6)\)[/tex]: Move 3 units to the right on the [tex]\(x\)[/tex]-axis and 6 units up on the [tex]\(y\)[/tex]-axis.
2. Plot the point [tex]\((6, 12)\)[/tex]: Move 6 units to the right on the [tex]\(x\)[/tex]-axis and 12 units up on the [tex]\(y\)[/tex]-axis.
3. Plot the point [tex]\((9, 18)\)[/tex]: Move 9 units to the right on the [tex]\(x\)[/tex]-axis and 18 units up on the [tex]\(y\)[/tex]-axis.

The resulting graph will have these three points plotted, which should lie in a straight line given the constant addition rules for both [tex]\(x\)[/tex] and [tex]\(y\)[/tex].