A local delivery company has a cumulative frequency table to show the distance it travels to deliver parcels.

\begin{tabular}{c|c}
\begin{tabular}{c}
Distance \\
[tex][tex]$(km)$[/tex][/tex]
\end{tabular} & \begin{tabular}{c}
Cumulative \\
frequency
\end{tabular} \\
\hline
[tex][tex]$0\ \textless \ d \leq 5$[/tex][/tex] & 10 \\
[tex][tex]$0\ \textless \ d \leq 10$[/tex][/tex] & 30 \\
[tex][tex]$0\ \textless \ d \leq 15$[/tex][/tex] & 50 \\
[tex][tex]$0\ \textless \ d \leq 20$[/tex][/tex] & 80
\end{tabular}

a) On the graph paper, draw a cumulative frequency diagram to show this information. Join your points with straight lines.

b) Use your diagram to estimate the median and the interquartile range of the delivery distances.

Optional working: [tex]\square[/tex]

Median: __________

IQR: __________



Answer :

Sure! Let's solve this step by step.

### Part (a): Drawing the cumulative frequency diagram

To draw a cumulative frequency diagram:

1. Plot the points: Use the given cumulative frequency table to plot points on a graph. The x-axis represents the distance (km) and the y-axis represents the cumulative frequency.

[tex]\( (5, 10) \)[/tex]
[tex]\( (10, 30) \)[/tex]
[tex]\( (15, 50) \)[/tex]
[tex]\( (20, 80) \)[/tex]

2. Draw the axes: Label the x-axis as 'Distance (km)' and the y-axis as 'Cumulative Frequency'.

3. Join the points: Connect the points with straight lines to form the cumulative frequency curve.

### Part (b): Estimating the median and the interquartile range

From the cumulative frequency table, we know the total number of deliveries is [tex]\( 80 \)[/tex].

#### Find the median position:

1. Median position: The median is the 50th percentile of the data. For a total of [tex]\( 80 \)[/tex] deliveries, the median position is:
[tex]\[ \text{Median position} = \frac{80}{2} = 40 \][/tex]

2. Locate the median on the graph: Find the y-value [tex]\( 40 \)[/tex] on your cumulative frequency curve. Draw a horizontal line from [tex]\( 40 \)[/tex] on the y-axis to where it intersects the curve, then draw a vertical line down to the x-axis to find the median distance.

In this case, estimating visually from the points provided:
- At [tex]\( 10 \)[/tex] km, the cumulative frequency is [tex]\( 30 \)[/tex].
- At [tex]\( 15 \)[/tex] km, the cumulative frequency is [tex]\( 50 \)[/tex].

Hence, the median distance is between [tex]\( 10 \)[/tex] km and [tex]\( 15 \)[/tex] km. Interpolating between these points:
[tex]\[ \text{Median distance} \approx 12.5 \, \text{km} \quad \text{(midpoint between 10 and 15 km)} \][/tex]

#### Find the interquartile range (IQR):

1. Q1 and Q3 positions: The interquartile range is between the first quartile (Q1) and the third quartile (Q3):
[tex]\[ \text{Q1 position} = \frac{80}{4} = 20 \][/tex]
[tex]\[ \text{Q3 position} = \frac{3 \times 80}{4} = 60 \][/tex]

2. Locate Q1 and Q3 on the graph:
- For [tex]\( Q1 \)[/tex], find the y-value [tex]\( 20 \)[/tex] on your cumulative frequency curve. Interpolating:
- At [tex]\( 5 \)[/tex] km, the cumulative frequency is [tex]\( 10 \)[/tex].
- At [tex]\( 10 \)[/tex] km, the cumulative frequency is [tex]\( 30 \)[/tex].

Hence, [tex]\( Q1 \)[/tex] is between [tex]\( 5 \)[/tex] km and [tex]\( 10 \)[/tex] km. Interpolating between these points, it would be closer to [tex]\( 5 \)[/tex] km since [tex]\( 20 \)[/tex] is closer to [tex]\( 10 \)[/tex]:
[tex]\[ Q1 \approx 7.5 \, \text{km} \][/tex]

- For [tex]\( Q3 \)[/tex], find the y-value [tex]\( 60 \)[/tex] on your cumulative frequency curve. Interpolating:
- At [tex]\( 15 \)[/tex] km, the cumulative frequency is [tex]\( 50 \)[/tex].
- At [tex]\( 20 \)[/tex] km, the cumulative frequency is [tex]\( 80 \)[/tex].

Hence, [tex]\( Q3 \)[/tex] is between [tex]\( 15 \)[/tex] km and [tex]\( 20 \)[/tex] km. Interpolating between these points:
[tex]\[ Q3 \approx 17.5 \, \text{km} \][/tex]

3. Calculate the IQR: Subtract [tex]\( Q1 \)[/tex] from [tex]\( Q3 \)[/tex]:
[tex]\[ \text{IQR} = Q3 - Q1 = 17.5 \, \text{km} - 7.5 \, \text{km} = 10 \, \text{km} \][/tex]

Thus, the median delivery distance is approximately [tex]\( 12.5 \)[/tex] km, and the interquartile range (IQR) is [tex]\( 10 \)[/tex] km.