Answer :
To identify the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] in the quadratic equation [tex]\(2x^2 + 3x + 7 = 0\)[/tex], we need to compare it with the standard form of a quadratic equation, which is [tex]\(ax^2 + bx + c = 0\)[/tex].
1. Identify [tex]\(a\)[/tex]:
- The coefficient of [tex]\(x^2\)[/tex] is [tex]\(2\)[/tex].
- Therefore, [tex]\(a = 2\)[/tex].
2. Identify [tex]\(b\)[/tex]:
- The coefficient of [tex]\(x\)[/tex] is [tex]\(3\)[/tex].
- Therefore, [tex]\(b = 3\)[/tex].
3. Identify [tex]\(c\)[/tex]:
- The constant term is [tex]\(7\)[/tex].
- Therefore, [tex]\(c = 7\)[/tex].
In summary:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 3\)[/tex]
- [tex]\(c = 7\)[/tex]
These are the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] for the quadratic equation [tex]\(2x^2 + 3x + 7 = 0\)[/tex].
1. Identify [tex]\(a\)[/tex]:
- The coefficient of [tex]\(x^2\)[/tex] is [tex]\(2\)[/tex].
- Therefore, [tex]\(a = 2\)[/tex].
2. Identify [tex]\(b\)[/tex]:
- The coefficient of [tex]\(x\)[/tex] is [tex]\(3\)[/tex].
- Therefore, [tex]\(b = 3\)[/tex].
3. Identify [tex]\(c\)[/tex]:
- The constant term is [tex]\(7\)[/tex].
- Therefore, [tex]\(c = 7\)[/tex].
In summary:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 3\)[/tex]
- [tex]\(c = 7\)[/tex]
These are the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] for the quadratic equation [tex]\(2x^2 + 3x + 7 = 0\)[/tex].