Which geometric series represents [tex][tex]$0.4444 \ldots$[/tex][/tex] as a fraction?

A. [tex]\frac{1}{4}+\frac{1}{40}+\frac{1}{400}+\frac{1}{4,000}+\ldots[/tex]

B. [tex]\frac{1}{40}+\frac{1}{400}+\frac{1}{4,000}+\frac{1}{40,000}+\ldots[/tex]

C. [tex]\frac{4}{10}+\frac{4}{100}+\frac{4}{1,000}+\frac{4}{10,000}+\ldots[/tex]

D. [tex]\frac{1}{10}+\frac{1}{100}+\frac{1}{1,000}+\frac{1}{10,000}+\ldots[/tex]



Answer :

Let's determine which geometric series best represents the repeating decimal [tex]$0.4444\ldots$[/tex].

To identify a repeating decimal, we can focus on the pattern of the digits. The given decimal [tex]$0.4444\ldots$[/tex] has the digit 4 repeating indefinitely.

We can express this repeating decimal in the form of a series as follows:

[tex]$ 0.4444\ldots = 0.4 + 0.04 + 0.004 + 0.0004 + \ldots $[/tex]

Each term in this series represents the decimal place value moved one position to the right, with each term being a fraction of 10. This can be written as:

[tex]$ 0.4 = \frac{4}{10},\, 0.04 = \frac{4}{100},\, 0.004 = \frac{4}{1,000},\, \ldots $[/tex]

Thus, the series can be expressed as:

[tex]$ \frac{4}{10} + \frac{4}{100} + \frac{4}{1,000} + \frac{4}{10,000} + \ldots $[/tex]

Therefore, the geometric series representing [tex]$0.4444\ldots$[/tex] as a fraction is [tex]$\frac{4}{10} + \frac{4}{100} + \frac{4}{1,000} + \frac{4}{10,000} + \ldots$[/tex]

The correct answer is:

[tex]$ \frac{4}{10} + \frac{4}{100} + \frac{4}{1,000} + \frac{4}{10,000} + \ldots $[/tex]