Evaluate the expression [tex]\(-2\left|x^2-15\right|-4\)[/tex] when [tex]\(x=-3\)[/tex].

A. [tex]\(-16\)[/tex]
B. [tex]\(-52\)[/tex]
C. [tex]\(44\)[/tex]
D. [tex]\(8\)[/tex]



Answer :

Let's evaluate the expression [tex]\(-2\left|x^2 - 15\right| - 4\)[/tex] when [tex]\(x = -3\)[/tex].

1. Substitute [tex]\(x = -3\)[/tex] into the expression inside the absolute value:
[tex]\[ x^2 - 15 \][/tex]
[tex]\[ (-3)^2 - 15 \][/tex]

2. Calculate [tex]\((-3)^2 - 15\)[/tex]:
[tex]\[ 9 - 15 = -6 \][/tex]
So, [tex]\((x^2 - 15)\)[/tex] evaluates to [tex]\(-6\)[/tex].

3. Find the absolute value of [tex]\(-6\)[/tex]:
[tex]\[ \left|-6\right| = 6 \][/tex]

4. Substitute the absolute value back into the original expression:
[tex]\[ -2\left|x^2 - 15\right| - 4 \][/tex]
[tex]\[ -2(6) - 4 \][/tex]

5. Calculate [tex]\(-2(6) - 4\)[/tex]:
[tex]\[ -12 - 4 = -16 \][/tex]

Therefore, the value of the expression when [tex]\(x = -3\)[/tex] is [tex]\(-16\)[/tex]. The correct answer is:
[tex]\[ \boxed{-16} \][/tex]