Answer :

Sure! Let's solve the equation step-by-step.

We are given the equation:

[tex]\[ \frac{4x - 5}{x + 2} = \frac{8x - 1}{2x + 1} \][/tex]

Step 1: Cross-multiply to eliminate the fractions

[tex]\[ (4x - 5)(2x + 1) = (8x - 1)(x + 2) \][/tex]

Step 2: Expand both sides of the equation

Let's expand the left-hand side:

[tex]\[ (4x - 5)(2x + 1) = 4x \cdot 2x + 4x \cdot 1 - 5 \cdot 2x - 5 \cdot 1 \][/tex]

[tex]\[ = 8x^2 + 4x - 10x - 5 \][/tex]

[tex]\[ = 8x^2 - 6x - 5 \][/tex]

Now, let's expand the right-hand side:

[tex]\[ (8x - 1)(x + 2) = 8x \cdot x + 8x \cdot 2 - 1 \cdot x - 1 \cdot 2 \][/tex]

[tex]\[ = 8x^2 + 16x - x - 2 \][/tex]

[tex]\[ = 8x^2 + 15x - 2 \][/tex]

Step 3: Set the two expanded equations equal to each other

[tex]\[ 8x^2 - 6x - 5 = 8x^2 + 15x - 2 \][/tex]

Step 4: Subtract [tex]\(8x^2\)[/tex] from both sides of the equation

[tex]\[ -6x - 5 = 15x - 2 \][/tex]

Step 5: Move all the [tex]\(x\)[/tex]-terms to one side and the constants to the other side

[tex]\[ -6x - 15x = -2 + 5 \][/tex]

[tex]\[ -21x = 3 \][/tex]

Step 6: Solve for [tex]\(x\)[/tex]

[tex]\[ x = \frac{3}{-21} \][/tex]

[tex]\[ x = -\frac{1}{7} \][/tex]

So, the solution to the equation is:

[tex]\[ x = -\frac{1}{7} \][/tex]