Condense to a single logarithm:

[tex]\[ 4 \log_9 11 - 4 \log_9 7 \][/tex]

A. [tex]\(\log_9 \left( \frac{44}{7} \right)\)[/tex]

B. [tex]\(\log_9 \left( \frac{11}{28} \right)\)[/tex]

C. [tex]\(\log_9 \left( \frac{11}{7} \right)^4\)[/tex]

D. [tex]\(\log_9 \left( \frac{44}{28} \right)\)[/tex]



Answer :

To condense the expression [tex]\(4 \log_9 11 - 4 \log_9 7\)[/tex] to a single logarithm, follow these steps:

1. Factor out the common coefficient:
The expression [tex]\(4 \log_9 11 - 4 \log_9 7\)[/tex] has a common factor of 4. Factor this out:
[tex]\[ 4 (\log_9 11 - \log_9 7) \][/tex]

2. Use the properties of logarithms:
Recall the logarithm property that states [tex]\(\log_b a - \log_b c = \log_b \left( \frac{a}{c} \right)\)[/tex]. Apply this property:
[tex]\[ \log_9 11 - \log_9 7 = \log_9 \left( \frac{11}{7} \right) \][/tex]
Thus, the expression becomes:
[tex]\[ 4 \log_9 \left( \frac{11}{7} \right) \][/tex]

3. Apply another logarithm property:
Use the power rule for logarithms, which states [tex]\(k \log_b a = \log_b (a^k)\)[/tex]. Apply this rule where [tex]\(k = 4\)[/tex]:
[tex]\[ 4 \log_9 \left( \frac{11}{7} \right) = \log_9 \left( \left( \frac{11}{7} \right)^4 \right) \][/tex]

Therefore, the expression [tex]\(4 \log_9 11 - 4 \log_9 7\)[/tex] condensed to a single logarithm is:
[tex]\[ \log_9 \left( \left( \frac{11}{7} \right)^4 \right) \][/tex]

This matches the enhanced option:
[tex]\[ \log_9 \left( \left( \frac{11}{7} \right)^4 \right) \][/tex]