To find the mass of the crate, we'll use the formula [tex]\( F = ma \)[/tex], where [tex]\( F \)[/tex] is the force applied, [tex]\( m \)[/tex] is the mass of the crate, and [tex]\( a \)[/tex] is the acceleration.
Given:
- Force ([tex]\( F \)[/tex]) = 200 Newtons
- Acceleration ([tex]\( a \)[/tex]) = 8 meters per second squared
We need to solve for the mass ([tex]\( m \)[/tex]). The formula can be rearranged to solve for mass:
[tex]\[ m = \frac{F}{a} \][/tex]
Substitute the given values into the equation:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
Now, perform the division:
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is [tex]\( 25 \)[/tex] kilograms.
Among the given options:
- [tex]\( 25 \, \text{kg} \)[/tex]
- [tex]\( 192 \, \text{kg} \)[/tex]
- [tex]\( 208 \, \text{kg} \)[/tex]
- [tex]\( 16 \, \text{kg} \)[/tex]
The correct answer is [tex]\( 25 \, \text{kg} \)[/tex].