The vertices of the feasible region represented by a system are [tex]\((0,100)\)[/tex], [tex]\((0,80)\)[/tex], [tex]\((80,60)\)[/tex], [tex]\((80,0)\)[/tex], and [tex]\((120,0)\)[/tex].

What are the minimum and maximum values of the objective function [tex]\( F = 8x + 5y \)[/tex]?

Minimum: [tex]\(\square\)[/tex]

Maximum: [tex]\(\square\)[/tex]



Answer :

To determine the minimum and maximum values of the objective function [tex]\(F = 8x + 5y\)[/tex] for the given vertices of the feasible region [tex]\((0, 100), (0, 80), (80, 60), (80, 0), (120, 0)\)[/tex], we need to evaluate the objective function at each vertex:

1. For the vertex [tex]\((0, 100)\)[/tex]:
[tex]\[ F = 8(0) + 5(100) = 0 + 500 = 500 \][/tex]

2. For the vertex [tex]\((0, 80)\)[/tex]:
[tex]\[ F = 8(0) + 5(80) = 0 + 400 = 400 \][/tex]

3. For the vertex [tex]\((80, 60)\)[/tex]:
[tex]\[ F = 8(80) + 5(60) = 640 + 300 = 940 \][/tex]

4. For the vertex [tex]\((80, 0)\)[/tex]:
[tex]\[ F = 8(80) + 5(0) = 640 + 0 = 640 \][/tex]

5. For the vertex [tex]\((120, 0)\)[/tex]:
[tex]\[ F = 8(120) + 5(0) = 960 + 0 = 960 \][/tex]

Now we have the values of the objective function at each vertex:
- At [tex]\((0, 100)\)[/tex], [tex]\(F = 500\)[/tex]
- At [tex]\((0, 80)\)[/tex], [tex]\(F = 400\)[/tex]
- At [tex]\((80, 60)\)[/tex], [tex]\(F = 940\)[/tex]
- At [tex]\((80, 0)\)[/tex], [tex]\(F = 640\)[/tex]
- At [tex]\((120, 0)\)[/tex], [tex]\(F = 960\)[/tex]

The minimum value of [tex]\(F\)[/tex] is 400, and the maximum value of [tex]\(F\)[/tex] is 960.

Therefore:
Minimum: [tex]\(400\)[/tex]

Maximum: [tex]\(960\)[/tex]