Melissa collected the data in the table.

\begin{tabular}{|c|c|c|c|}
\hline
[tex]$x$[/tex] & Given & Predicted & Residual \\
\hline
1 & 2 & 1 & 1 \\
\hline
2 & 3 & 4 & -1 \\
\hline
3 & 8 & 7 & 1 \\
\hline
4 & 9 & 10 & [tex]$?$[/tex] \\
\hline
\end{tabular}

When [tex]$x=4$[/tex], what is the residual?

A. [tex]$-3$[/tex]
B. [tex]$-1$[/tex]
C. 1
D. 3



Answer :

To find the residual when [tex]\( x = 4 \)[/tex], we need to understand how the residual is calculated. The residual is the difference between the given value and the predicted value. Based on the information provided, the formula we use to calculate the residual is:

[tex]\[ \text{Residual} = \text{Given} - \text{Predicted} \][/tex]

For [tex]\( x = 4 \)[/tex]:
- The given value (Given) is 9.
- The predicted value (Predicted) is 10.

Now, using the formula:

[tex]\[ \text{Residual} = 9 - 10 \][/tex]
[tex]\[ \text{Residual} = -1 \][/tex]

Therefore, when [tex]\( x = 4 \)[/tex], the residual is [tex]\(-1\)[/tex].

The correct answer is:
[tex]\[ -1 \][/tex]