Combine the radicals [tex]\(-2 \sqrt{13} + 19 \sqrt{13}\)[/tex].

A. [tex]\(17 \sqrt{26}\)[/tex]

B. [tex]\(-21 \sqrt{13}\)[/tex]

C. [tex]\(17 \sqrt{}\)[/tex]

D. [tex]\(21 \sqrt{26}\)[/tex]



Answer :

To combine the radicals [tex]\(-2 \sqrt{13} + 19 \sqrt{13}\)[/tex], follow these steps:

1. Identify the numerical coefficients and the common radical part:

- The first term is [tex]\(-2 \sqrt{13}\)[/tex].
- The second term is [tex]\(19 \sqrt{13}\)[/tex].

Here, both terms have the same radical part, [tex]\(\sqrt{13}\)[/tex].

2. Combine the numerical coefficients while keeping the radical part constant:

- The coefficient of the first term is [tex]\(-2\)[/tex].
- The coefficient of the second term is [tex]\(19\)[/tex].

Combine these coefficients:
[tex]\[ -2 + 19 = 17 \][/tex]

3. Attach the common radical part to the simplified coefficient:

Using the combined coefficient and the shared radical part:
[tex]\[ 17 \sqrt{13} \][/tex]

So, [tex]\(-2 \sqrt{13} + 19 \sqrt{13}\)[/tex] simplifies to [tex]\(17 \sqrt{13}\)[/tex].

Therefore, the correct answer is:
[tex]\[ 17 \sqrt{13} \][/tex]