If [tex]JM = 5x - 8[/tex] and [tex]LM = 2x - 6[/tex], which expression represents [tex]JL[/tex]?

A. [tex]3x - 2[/tex]
B. [tex]3x - 14[/tex]
C. [tex]7x - 2[/tex]
D. [tex]7x - 14[/tex]



Answer :

Let's solve the problem step-by-step.

1. Identify the expressions for JM and LM:

Given:
[tex]\[ JM = 5x - 8 \][/tex]
[tex]\[ LM = 2x - 6 \][/tex]

2. Determine the expression for JL by adding JM and LM:

[tex]\[ JL = JM + LM \][/tex]

Substituting the given expressions:

[tex]\[ JL = (5x - 8) + (2x - 6) \][/tex]

3. Combine the like terms:

- Combine the [tex]\(x\)[/tex] terms: [tex]\(5x + 2x\)[/tex]
- Combine the constant terms: [tex]\(-8 - 6\)[/tex]

Thus,

[tex]\[ JL = 5x + 2x - 8 - 6 \][/tex]

Simplifying this:

[tex]\[ JL = 7x - 14 \][/tex]

4. Compare with the given options:

Let's list the options again:
[tex]\[ \text{(A) } 3x - 2 \][/tex]
[tex]\[ \text{(B) } 3x - 14 \][/tex]
[tex]\[ \text{(C) } 7x - 2 \][/tex]
[tex]\[ \text{(D) } 7x - 14 \][/tex]

The expression we found for JL is [tex]\(7x - 14\)[/tex].

5. Determine the correct choice:

By comparing [tex]\(JL = 7x - 14\)[/tex] with the options, it's clear that the correct option is:

[tex]\[ \boxed{7x - 14} \][/tex]

Therefore, the expression that represents [tex]\( JL \)[/tex] is:

[tex]\[ \boxed{7x - 14} \][/tex]

This corresponds to option D. Therefore, the answer is:

[tex]\[ \boxed{4} \][/tex]