Answer :
To determine how many moles of oxygen atoms are present in [tex]\(2.4 \times 10^{24}\)[/tex] molecules of [tex]\(SO_3\)[/tex], follow these steps:
### Step 1: Find the number of moles of [tex]\(SO_3\)[/tex]
First, we need to know the number of molecules in one mole of a substance. This is given by Avogadro's number, [tex]\(6.022 \times 10^{23}\)[/tex] molecules per mole.
To find the number of moles of [tex]\(SO_3\)[/tex], we use the formula:
[tex]\[ \text{moles of } SO_3 = \frac{\text{number of molecules of } SO_3}{\text{Avogadro's number}} \][/tex]
Given:
[tex]\[ \text{number of molecules of } SO_3 = 2.4 \times 10^{24} \][/tex]
[tex]\[ \text{Avogadro's number} = 6.022 \times 10^{23} \][/tex]
Substitute these values into the formula:
[tex]\[ \text{moles of } SO_3 = \frac{2.4 \times 10^{24}}{6.022 \times 10^{23}} \][/tex]
From this calculation, we find:
[tex]\[ \text{moles of } SO_3 \approx 3.985 \][/tex]
### Step 2: Determine moles of oxygen atoms in [tex]\(SO_3\)[/tex]
Each molecule of [tex]\(SO_3\)[/tex] contains 3 atoms of oxygen.
To find the number of moles of oxygen atoms, we multiply the moles of [tex]\(SO_3\)[/tex] by the number of oxygen atoms per molecule of [tex]\(SO_3\)[/tex]:
[tex]\[ \text{moles of oxygen atoms} = \text{moles of } SO_3 \times 3 \][/tex]
So,
[tex]\[ \text{moles of oxygen atoms} = 3.985 \times 3 \][/tex]
From this calculation, we find:
[tex]\[ \text{moles of oxygen atoms} \approx 11.956 \][/tex]
### Conclusion
Therefore, in [tex]\(2.4 \times 10^{24}\)[/tex] molecules of [tex]\(SO_3\)[/tex], there are approximately [tex]\(3.985\)[/tex] moles of [tex]\(SO_3\)[/tex] and [tex]\(11.956\)[/tex] moles of oxygen atoms.
### Step 1: Find the number of moles of [tex]\(SO_3\)[/tex]
First, we need to know the number of molecules in one mole of a substance. This is given by Avogadro's number, [tex]\(6.022 \times 10^{23}\)[/tex] molecules per mole.
To find the number of moles of [tex]\(SO_3\)[/tex], we use the formula:
[tex]\[ \text{moles of } SO_3 = \frac{\text{number of molecules of } SO_3}{\text{Avogadro's number}} \][/tex]
Given:
[tex]\[ \text{number of molecules of } SO_3 = 2.4 \times 10^{24} \][/tex]
[tex]\[ \text{Avogadro's number} = 6.022 \times 10^{23} \][/tex]
Substitute these values into the formula:
[tex]\[ \text{moles of } SO_3 = \frac{2.4 \times 10^{24}}{6.022 \times 10^{23}} \][/tex]
From this calculation, we find:
[tex]\[ \text{moles of } SO_3 \approx 3.985 \][/tex]
### Step 2: Determine moles of oxygen atoms in [tex]\(SO_3\)[/tex]
Each molecule of [tex]\(SO_3\)[/tex] contains 3 atoms of oxygen.
To find the number of moles of oxygen atoms, we multiply the moles of [tex]\(SO_3\)[/tex] by the number of oxygen atoms per molecule of [tex]\(SO_3\)[/tex]:
[tex]\[ \text{moles of oxygen atoms} = \text{moles of } SO_3 \times 3 \][/tex]
So,
[tex]\[ \text{moles of oxygen atoms} = 3.985 \times 3 \][/tex]
From this calculation, we find:
[tex]\[ \text{moles of oxygen atoms} \approx 11.956 \][/tex]
### Conclusion
Therefore, in [tex]\(2.4 \times 10^{24}\)[/tex] molecules of [tex]\(SO_3\)[/tex], there are approximately [tex]\(3.985\)[/tex] moles of [tex]\(SO_3\)[/tex] and [tex]\(11.956\)[/tex] moles of oxygen atoms.