Rewrite the expression below as 12 to a single power:

[tex]\[ \left(12^2\right)^{10} = \][/tex]

[tex]\[\boxed{\square}\][/tex]



Answer :

To rewrite the expression [tex]\(\left(12^2\right)^{10}\)[/tex] as 12 to a single power, we can use the power rule of exponents. The power rule states that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].

Here, our base [tex]\(a\)[/tex] is 12, the exponent [tex]\(m\)[/tex] is 2, and the exponent [tex]\(n\)[/tex] is 10. We apply the power rule to combine the exponents:

[tex]\[ (12^2)^{10} = 12^{2 \cdot 10} \][/tex]

Now, we multiply the exponents:

[tex]\[ 2 \cdot 10 = 20 \][/tex]

Thus, the expression [tex]\((12^2)^{10}\)[/tex] can be rewritten as:

[tex]\[ 12^{20} \][/tex]

So, the expression [tex]\(\left(12^2\right)^{10} = 12^{20}\)[/tex].