Answer :
To find the electric force acting between two charges using Coulomb's Law, we will use the formula:
[tex]\[ F_e = \frac{k \cdot q_1 \cdot q_2}{r^2} \][/tex]
where:
- [tex]\( q_1 = -0.0050 \, \text{C} \)[/tex]
- [tex]\( q_2 = 0.0050 \, \text{C} \)[/tex]
- [tex]\( r = 0.025 \, \text{m} \)[/tex]
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]
Let's break this down step-by-step:
1. Substitute the values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) \cdot (-0.0050) \cdot (0.0050)}{(0.025)^2} \][/tex]
2. Calculate the denominator [tex]\((r^2)\)[/tex]:
[tex]\[ (0.025)^2 = 0.000625 \, \text{m}^2\][/tex]
3. Calculate the numerator:
[tex]\[ (9.00 \times 10^9) \cdot (-0.0050) \cdot (0.0050) \][/tex]
[tex]\[ = (9.00 \times 10^9) \cdot (-0.000025) \][/tex]
[tex]\[ = -225 \times 10^3 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \][/tex]
4. Combine the numerator and the denominator:
[tex]\[ F_e = \frac{-225 \times 10^3}{0.000625} \][/tex]
5. Compute the division:
[tex]\[ F_e = -359999999.99999994 \, \text{N} \][/tex]
[tex]\[ = -3.6 \times 10^8 \, \text{N} \][/tex]
So, the electric force acting between the two charges is [tex]\(-3.6 \times 10^8 \, \text{N}\)[/tex].
Therefore, the correct answer is:
B. [tex]\(-3.6 \times 10^8 \, \text{N}\)[/tex]
[tex]\[ F_e = \frac{k \cdot q_1 \cdot q_2}{r^2} \][/tex]
where:
- [tex]\( q_1 = -0.0050 \, \text{C} \)[/tex]
- [tex]\( q_2 = 0.0050 \, \text{C} \)[/tex]
- [tex]\( r = 0.025 \, \text{m} \)[/tex]
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]
Let's break this down step-by-step:
1. Substitute the values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) \cdot (-0.0050) \cdot (0.0050)}{(0.025)^2} \][/tex]
2. Calculate the denominator [tex]\((r^2)\)[/tex]:
[tex]\[ (0.025)^2 = 0.000625 \, \text{m}^2\][/tex]
3. Calculate the numerator:
[tex]\[ (9.00 \times 10^9) \cdot (-0.0050) \cdot (0.0050) \][/tex]
[tex]\[ = (9.00 \times 10^9) \cdot (-0.000025) \][/tex]
[tex]\[ = -225 \times 10^3 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \][/tex]
4. Combine the numerator and the denominator:
[tex]\[ F_e = \frac{-225 \times 10^3}{0.000625} \][/tex]
5. Compute the division:
[tex]\[ F_e = -359999999.99999994 \, \text{N} \][/tex]
[tex]\[ = -3.6 \times 10^8 \, \text{N} \][/tex]
So, the electric force acting between the two charges is [tex]\(-3.6 \times 10^8 \, \text{N}\)[/tex].
Therefore, the correct answer is:
B. [tex]\(-3.6 \times 10^8 \, \text{N}\)[/tex]