To determine the mass of the crate given a net force of [tex]\( 12 \, \text{N} \)[/tex] and an acceleration of [tex]\( 0.20 \, \text{m/s}^2 \)[/tex], we can use Newton's second law of motion. Newton's second law states that:
[tex]\[ F = m \cdot a \][/tex]
where:
- [tex]\( F \)[/tex] is the net force applied to the object (in Newtons, [tex]\( \text{N} \)[/tex]),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms, [tex]\( \text{kg} \)[/tex]),
- [tex]\( a \)[/tex] is the acceleration of the object (in meters per second squared, [tex]\( \text{m/s}^2 \)[/tex]).
We need to solve for the mass [tex]\( m \)[/tex]. We can rearrange the formula to solve for [tex]\( m \)[/tex] as follows:
[tex]\[ m = \frac{F}{a} \][/tex]
Given:
- Net force, [tex]\( F = 12 \, \text{N} \)[/tex]
- Acceleration, [tex]\( a = 0.20 \, \text{m/s}^2 \)[/tex]
Substitute the given values into the equation:
[tex]\[ m = \frac{12 \, \text{N}}{0.20 \, \text{m/s}^2} \][/tex]
[tex]\[ m = \frac{12}{0.20} \][/tex]
[tex]\[ m = 60 \][/tex]
Thus, the mass of the crate is [tex]\( 60 \, \text{kg} \)[/tex].
The correct answer is [tex]\( 60 \, \text{kg} \)[/tex].