Use technology to graph function [tex]h[/tex]. Then use the graph to evaluate the function.

[tex]\ \textless \ br/\ \textgreater \ h(x) = \left\{\ \textless \ br/\ \textgreater \ \begin{array}{ll}\ \textless \ br/\ \textgreater \ -x^2 - 6x - 9, & x \ \textless \ -2 \\\ \textless \ br/\ \textgreater \ \left(\frac{1}{3}\right)^x - 4, & -2 \leq x \leq 2 \\\ \textless \ br/\ \textgreater \ \frac{1}{2}x - 4, & x \ \textgreater \ 2\ \textless \ br/\ \textgreater \ \end{array}\ \textless \ br/\ \textgreater \ \right.\ \textless \ br/\ \textgreater \ [/tex]

Type the correct answer in each box. Use numerals instead of words.

[tex]\ \textless \ br/\ \textgreater \ \begin{array}{l}\ \textless \ br/\ \textgreater \ h(-3) = \square \\\ \textless \ br/\ \textgreater \ h(-2) = \square \\\ \textless \ br/\ \textgreater \ h(4) = \square\ \textless \ br/\ \textgreater \ \end{array}\ \textless \ br/\ \textgreater \ [/tex]



Answer :

To evaluate the function [tex]\( h(x) \)[/tex] at the given points, let's analyze the piecewise defined function and the appropriate intervals for each given value.

The function is defined as follows:

[tex]\[ h(x)=\left\{\begin{array}{ll} -x^2-6 x-9, & x<-2 \\ \left(\frac{1}{3}\right)^x-4, & -2 \leq x \leq 2 \\ \frac{1}{2} x-4, & x>2 \end{array}\right. \][/tex]

1. Evaluating [tex]\( h(-3) \)[/tex]:

- Since [tex]\(-3 < -2\)[/tex], we use the first piece of the function:
[tex]\[ h(x) = -x^2 - 6x - 9 \][/tex]
Substituting [tex]\( x = -3 \)[/tex]:
[tex]\[ h(-3) = -(-3)^2 - 6(-3) - 9 \][/tex]
Simplifying:
[tex]\[ = -9 + 18 - 9 = 0 \][/tex]
Therefore,
[tex]\[ h(-3) = 0 \][/tex]

2. Evaluating [tex]\( h(-2) \)[/tex]:

- Since [tex]\(-2 \leq -2 \leq 2\)[/tex], we use the second piece of the function:
[tex]\[ h(x) = \left(\frac{1}{3}\right)^x - 4 \][/tex]
Substituting [tex]\( x = -2 \)[/tex]:
[tex]\[ h(-2) = \left(\frac{1}{3}\right)^{-2} - 4 \][/tex]
Simplifying:
[tex]\[ = 3^2 - 4 = 9 - 4 = 5 \][/tex]
Therefore,
[tex]\[ h(-2) = 5 \][/tex]

3. Evaluating [tex]\( h(4) \)[/tex]:

- Since [tex]\(4 > 2\)[/tex], we use the third piece of the function:
[tex]\[ h(x) = \frac{1}{2}x - 4 \][/tex]
Substituting [tex]\( x = 4 \)[/tex]:
[tex]\[ h(4) = \frac{1}{2}(4) - 4 \][/tex]
Simplifying:
[tex]\[ = 2 - 4 = -2 \][/tex]
Therefore,
[tex]\[ h(4) = -2 \][/tex]

Summarizing the results:

[tex]\( \begin{array}{l} h(-3)= 0 \\ h(-2)= 5 \\ h(4)= -2 \end{array} \)[/tex]