Answer :

Certainly! Let's solve the equation step-by-step to find [tex]\( x \)[/tex]:

Given the equation:
[tex]\[ \frac{a - x}{b} - \frac{x + b}{a} = 0 \][/tex]

1. Combine the Fractions:

First, we need to express the two terms with a common denominator. The common denominator between [tex]\( b \)[/tex] and [tex]\( a \)[/tex] is [tex]\( ab \)[/tex].
[tex]\[ \frac{a - x}{b} = \frac{a(a - x)}{ab} \][/tex]
[tex]\[ \frac{x + b}{a} = \frac{b(x + b)}{ab} \][/tex]

2. Rewrite the Equation:
[tex]\[ \frac{a(a - x) - b(x + b)}{ab} = 0 \][/tex]

3. Eliminate the Denominator:

To clear the fraction, multiply both sides by [tex]\( ab \)[/tex]:
[tex]\[ a(a - x) - b(x + b) = 0 \][/tex]

4. Distribute the Terms:

Expand both terms:
[tex]\[ a^2 - ax - bx - b^2 = 0 \][/tex]

5. Combine Like Terms:

Combine the terms involving [tex]\( x \)[/tex]:
[tex]\[ a^2 - (a + b)x - b^2 = 0 \][/tex]

6. Solve for [tex]\( x \)[/tex]:

Move the constant terms to the other side of the equation:
[tex]\[ a^2 - b^2 = (a + b)x \][/tex]

Then, divide both sides by [tex]\( (a + b) \)[/tex]:
[tex]\[ x = \frac{a^2 - b^2}{a + b} \][/tex]

7. Simplify the Expression:

Notice that [tex]\( a^2 - b^2 \)[/tex] is a difference of squares, which can be factored:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]

Substitute this back into the equation:
[tex]\[ x = \frac{(a - b)(a + b)}{a + b} \][/tex]

Provided [tex]\( a \neq -b \)[/tex], cancel out the [tex]\( (a + b) \)[/tex] terms:
[tex]\[ x = a - b \][/tex]

Thus, the solution to the equation [tex]\(\frac{a-x}{b} - \frac{x+b}{a} = 0\)[/tex] is:
[tex]\[ x = a - b \][/tex]