To solve the problem of determining the percentage increase in the price of an item, we'll follow these steps:
1. Identify the initial and current prices:
- Initial price: UGX 2400
- Current price: UGX 3000
2. Calculate the increase in price:
- Increase in price [tex]\( = \text{Current price} - \text{Initial price} \)[/tex]
- Increase in price [tex]\( = 3000 - 2400 = 600 \)[/tex]
3. Calculate the percentage increase:
- The formula for percentage increase is given by:
[tex]\[
\text{Percentage increase} = \left( \frac{\text{Increase in price}}{\text{Initial price}} \right) \times 100
\][/tex]
- Substituting the values we have:
[tex]\[
\text{Percentage increase} = \left( \frac{600}{2400} \right) \times 100
\][/tex]
4. Simplify the fraction:
[tex]\[
\frac{600}{2400} = \frac{1}{4} = 0.25
\][/tex]
5. Convert the fraction to a percentage:
[tex]\[
0.25 \times 100 = 25.0
\][/tex]
Therefore, the percentage increase in the price is [tex]\( 25.0\% \)[/tex].