Answer :
To find the value of [tex]\(\frac{1}{3}\)[/tex] of [tex]\(3 \frac{1}{3}\)[/tex], we can break the problem into simple steps:
1. Convert the mixed fraction to an improper fraction:
A mixed fraction [tex]\(3 \frac{1}{3}\)[/tex] can be converted into an improper fraction as follows:
[tex]\[ 3 \frac{1}{3} = 3 + \frac{1}{3} = \frac{3 \times 3 + 1}{3} = \frac{9 + 1}{3} = \frac{10}{3} \][/tex]
2. Multiply the fractions:
Now, we need to find [tex]\(\frac{1}{3}\)[/tex] of [tex]\(\frac{10}{3}\)[/tex]:
[tex]\[ \frac{1}{3} \times \frac{10}{3} = \frac{1 \times 10}{3 \times 3} = \frac{10}{9} \][/tex]
3. Convert the result to a decimal form:
To convert [tex]\(\frac{10}{9}\)[/tex] to a decimal, we perform the division of 10 by 9:
[tex]\[ \frac{10}{9} \approx 1.1111111111111112 \][/tex]
Therefore, [tex]\(\frac{1}{3}\)[/tex] of [tex]\(3 \frac{1}{3}\)[/tex] is approximately [tex]\(1.1111111111111112\)[/tex].
1. Convert the mixed fraction to an improper fraction:
A mixed fraction [tex]\(3 \frac{1}{3}\)[/tex] can be converted into an improper fraction as follows:
[tex]\[ 3 \frac{1}{3} = 3 + \frac{1}{3} = \frac{3 \times 3 + 1}{3} = \frac{9 + 1}{3} = \frac{10}{3} \][/tex]
2. Multiply the fractions:
Now, we need to find [tex]\(\frac{1}{3}\)[/tex] of [tex]\(\frac{10}{3}\)[/tex]:
[tex]\[ \frac{1}{3} \times \frac{10}{3} = \frac{1 \times 10}{3 \times 3} = \frac{10}{9} \][/tex]
3. Convert the result to a decimal form:
To convert [tex]\(\frac{10}{9}\)[/tex] to a decimal, we perform the division of 10 by 9:
[tex]\[ \frac{10}{9} \approx 1.1111111111111112 \][/tex]
Therefore, [tex]\(\frac{1}{3}\)[/tex] of [tex]\(3 \frac{1}{3}\)[/tex] is approximately [tex]\(1.1111111111111112\)[/tex].