Sure, let's evaluate the expression [tex]\( P^2 - \frac{(a - b)}{c} \)[/tex] step-by-step given the values [tex]\( P = 7 \)[/tex], [tex]\( a = 16 \)[/tex], [tex]\( b = 4 \)[/tex], and [tex]\( c = 3 \)[/tex].
1. First, square the value of [tex]\( P \)[/tex]:
[tex]\[
P^2 = 7^2 = 49
\][/tex]
2. Next, compute the difference [tex]\( a - b \)[/tex]:
[tex]\[
a - b = 16 - 4 = 12
\][/tex]
3. Divide the result by [tex]\( c \)[/tex]:
[tex]\[
\frac{a - b}{c} = \frac{12}{3} = 4.0
\][/tex]
4. Finally, subtract this result from [tex]\( P^2 \)[/tex]:
[tex]\[
P^2 - \frac{a - b}{c} = 49 - 4.0 = 45.0
\][/tex]
So, the evaluated result of the expression [tex]\( P^2 - \frac{(a - b)}{c} \)[/tex] is [tex]\( 45.0 \)[/tex].
To recap, here are all the intermediary values:
- [tex]\( P^2 = 49 \)[/tex]
- [tex]\( a - b = 12 \)[/tex]
- [tex]\( \frac{a - b}{c} = 4.0 \)[/tex]
- Final result: [tex]\( 45.0 \)[/tex]
The result of the expression is [tex]\( 45.0 \)[/tex].